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Modulation of Cosmic Rays by an Electric Field¢c

P. S. Freier and C. J. Waddinzton

ABSTRACT

A modulation model is discussed which assumes that the.decreased intensity

of the cosmic radiation is due to the enerEy loss experienced by particles

passing through electric fields in the solaD systmn. The model is mathe-

. m_tically equivalent to a heliocentric electric field. By assuming that the

particle source spect%m are power laws in total energy per nucleon, the modulation

i<i'' of the differential and integral intensities of protons and heli_ nuclei are

_ calculated. The predicted modulation observed by sea level neutron monitors and

meson detectors is also calculated and is given as a function of cutoff rigidity.

These calculations are compared to the n_.asuream_ntsmade during the last solar

_ cycle.

*Supported by the Office of Naval Research Contract No. Nonr 710(60).
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It is generally agreed that the observed solar modulation of the cosmic ray

• intensity arises from particle interecticns with interplanetary electromagnetic

fields associated with the ou_,,ardmoving plasma-of the solar wind° A major

problem which is encountered in understanding this modulation is to separate

The effects of energy interchanges bel_veenparticles and fields from the effects

of scatteminE without energy changes, Some models, such as T/_atoriginally pro-

posed by Pa1_<em(1963)p attribute the reduced intensity entirely to such scattm_inE

processest although in a later model Parker (1965) does take other processes into

account but in a manner which does not lead to precise analytical solutions

except in The limito This paper presents an interpretation of the exl_erimental

data based on a concept of energy interchange be%%men particles and the fields°

It is shown that the observed effects can be generally interpreted in terms of

• a modulation pz_uced by an equivalent electric field, and that this modulation _

can be simply expressed in a purely analytical fozmo

The equation for the instantaneous mate of enerEy change of a particle

m_vin_ in a field is Eiven by: dT/dt = _ 0 _, where T is the k_netic enea_y,

is the force cn The particle and _ the particle w.__-.i_y0 It can be seen that

in order to calculate the change of kinetic enerEy of the particle in cominE

from infinity to %h,aearth it is necessary to use the time average of T o _ and

to distinguish this from the dot product of the time averages of _ and V, which i

may well vanish° Such a model, in which it is assumed That the energy loss

suffered by a particle in coming from outside the solar systmn to %he earth is

• _he main cause of the modulation at The earth, is mathamatically equivalent to

the electric field model of modulation originally proposed by Nagashima (1951)

and Ehmer_ (1960), and recently re-emphasized by Fr_ier and Waddin_on (1965)o

This model has the attractive feature that it has only one adjustable parameter

00000001-TSB08
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apax_p of cou?se, from the question of the input parsn_ters specifying the source

spectz_ which presents a problem common 1:oall models° As a consequence, by

makinE assumptions on these input par_;etePs, it is possible to calculate the

expected modulation effects in detail and compare them with the experimental data°

Aside fr,._mthe fact that the data car.'_ reasonably well fitted by an

electric field model of the modulation (as shown hy Freier and Waddin_on,1965),

it is necessary to ascertain whethem the solar system contains fields of such

a magnitude that it could be possible fc_ pamticles on the average to lose as

much as 600 Mev per unit charEe in cuminE th_ouEh The solar system to the eaz_h0

Such an enerEy loss (corTesponding to a heliocentric potential of 600 x 106 volts)

would be necessary to explain the modulation observed during The last period of

maximun solam a_-tivityo In The model proposed by E_eier and WaddinEton (1965)D

the earth is assumed to be at some positive potential VD which is heliocentric

and relatively constant out to some distance from the sun which is detez_ned by

past and nresent solar activity° The electric field E = _V is thus usually only" r

present in some region outside the earth's orbit which may possibly be identified

with the shock fz._ntthat must occur in The reEion somewhere between I0 and i00 AU

where The solam wind becomes subsonic°

From measuremmlts in space it is now well establis_.d that There is a

continuous flow of plasma from the sun° The radial ejection of this plasma

combined with the solam rotation results in The sweeping out of magnetic lines

of for_e whose masnitude and direction have bean measured near the ea_.

Especially impotent to oum knowledEe of these magnetic fields is the work of

Ness and Wilcox (1965) who have shown that t_re is a reEulam longitudinal sepoy.

stTuc_ure in the field which co-rotates with the sun. They found in December 1963 D

for example D that 4/7 of the sectors had fields whose direction was away from the

sunD while only 3/7 of the sectors had directions towamds the sun° ThusD it seems

00000001-TSB09
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' plausible that particles attiring from ou:side the solar system and traversing

these fields could show an average change in energy which was not zero.

_hen a particle of chamKe Ze and of high energy passes thPough a plasma
mud

stream carrying a frozen-in magnetic field H, its energy inc._easesor dec.'_ases

by an _unountW - ZeVo corTespondinK to the potential difference, Vo, between

Zhe boundaries of the plasma stream, Falthanmar (1962)0 The electric fieldj E,

inside The s_eam is given by E - w x._._where w is the velocity of The solar
c

wind° Thusl s_eams %-ravellingon the ordeP of 500 km/sec camryinE fields

of 5_ have associated electPic fields of the o_deP of 2°5 x l0-3 volts/meteP.

It is possible t_hatsuch plasma streams of the dimensions of 1010m have potential

differences of 25 x 106 vol_ bergen rheim boundaPies. Such a modulating

• potential experienced by all cosmic Pay particles %Duld i fop example_ chanEe

The counting rate of a sea level high latitude neutron monitoP by about 008%°
4m

LarEeP oP more extensive fields are necessary to explain FoPbush ,_ecreases8rid

the ii year cycle modulationD but the quiet time solar wind velocities and

magnetic fields can account fop the mgnitude of the daily variations in neutron

n_nitoPs.

In ordeP to calculate the expected pamticle spectra af_em modulation_ it

is necessary to assure some form fop the spectra outside the solar system°

In ordeP to obtain The best possible fit to the existing data at high enePgiesp

it has been assumed that the source spectrum of helium nuclei has The form:

JHe (i E) -" 380 E"1° 45 paz_icles/m 2 stePosec
eh

where E is the total enerEy pep nucleon in GeV° The same spectral form is used

" fop the protons with a constant 15 times as larEe as for helium°

jp (,_E)- 15 JHe (,E) = 5700 E"1°45 paz_icles/m2 stemoSeC

O0000001-TSB11
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The modulated forms of the differential and integral intensities have been

calculated from these spectPa on the basis of the electric field model and

passage thrDuEh 3 g/cm2 of interstellaD ma%-ter,Freier _nd Wadd_n_on (1965)

and show reasonable agreement with those spectma observed during the last solar

cycle. FiDlre 1 shows the differential intensities as a ftmction of kinetic

enerEy for the power law in total energy, after passage through 3 g/cm2 of

interstella_ neutral hydrogen, and after modulation by various potantie.ls.

FiEume 2 shows the inteEmal intensities as a function of mEnetic rigidi_yo

The latitude effect that should be obsemved by sea level neutron monit

has also bean calculated and is compared in Figure 3 to latitude surveys made

duminE solam maximum and solam minimun0 This fiEure shows the pmedicted

latitude curves and the experimental observations made in 1954 and 1955 by

Rose et al (1956), and during 1957 and 1958 by Pukushima e_ al (1964) which

were recently sunmarized by Mathews and Kodama (1964)o

A similar calculation of the ll-year variation in the counting rates of

meson counters at sea level as a function of cutoff riEidity predicts a form

fbm the modulation which agrees well with that observed° In FiEure 4 are shown

the predicted curves for sunspot minimu_ (V=100 My) and sunspot maxim_n (V=600 _J)

alone with the intensities measured by sea level meson counters, Quenby (1964)o

Predicted Forbush decrease changes do not agree quite as well with

measured intensity changes as do the changes characteristic of the solar cycle.

High energy detectors tend to show more+,change than is predicted by the model°

For emmmpie, during the solar cycle the maximun change predicted far an under-

_._und (60 moWoeo) meson detector is io5% and only one-half that much for the Nov-

ember i960 Porbush decreases° H_wever_ under,round meson detectors showed as

much as a 105% decrease during the November event9 Mathews (1963). This larEe

O0000001-TSB13
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• decrease lasted for only a brief time, and recovery from this abnormally high

modulation occurmed definitel5 sooner than r_.coveryfor sea level detectors.
9

Figure 5 shows the 9umiation in the modulating potential during the last

solam cycleo The continuous line is the potential corTesponding to the average

n_onthlycounting rate of the 0%-tawaneutron monitor0 Individual deter_%ations

of V from various intensity measurements of protons and heli_n nuclei made

duping balloon flights are also shown° Measurements made during Forbush

decreases ape identified by azTow30

With this model for the input spectra and the form of n_dulation, detailed

calculation of ab=_ance ratios of protons and heliun nuclei can be made.

Figure 6 shows The predicted ratio of the differential intensities of protons

. and helium nuclei as a function of magnetic migidity° The exper_tal ratios

ape Those measured in emulsions and reposed at this conference, Waddington and
e

Freiem (1965)0 With the a,sst-_,-_._form of input spectma, the ratio of protons

to helium nucle_ is _.otcons-,_t with rigidity; modulation changes the ratio

somewhat at low rigidities0

The presence of a positive potential at the earth sho,lldresult in T/%e

accele_ai:[onof negative e].ectr<_,m0A ledge flux of electrons of a few hundred

_V would be expected at leas_ dv.x_ngsolar maximum° Instead, observations

show that the electron fl_'_>10O MeV is only %% oP less of the pr_m_l-yproton

flux above the same enerEY0 Thus, it becomes necessamy to postulate some loss

mechanism fop electrons which removes them as they are be.un£,accelerated and

before they reach ear,%_%oElectrons beinE of lower rigidity than protons of

the same enerEy will h_ much more affected by any rigidi%_ dependent sweeping

Q in the solar wind.
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FIGURE CAPTIONS

Figum_ 1 The differential energy spec_._aof protons and helium nuclei

as a function of kiretic mmrEy per nucleon° S indicates the

spec%Tun at the source which _s been assumed to be a power law

in total enemgy @eranucleon° The effect of passage _hrouEh

3 gm/cm 2 of interstellam hydrDgen is shown° This is the

unmodulated (V - O) spectrum outside the solar system° The

diffemential s_ctma axTiving at the earth for various potentials

ape shown°

F_u_e 2 The inteEral 1_igidityspectra of protons and bmlium nuclei for

modulating potentia]s _n 0 - I000 My.

Figur_ 3 Predicted counting mates fop sea level neutron monitors as a

function of threshold riEidityo The predicted cur_es are for

spectra modulated by potentials of I00 My in 195_ and 1955, and

600 My for 1958-1959o The experimental points are from latitude

surveys made during those years o

Fi_u-e q Predicted counting rates for sea level mesons at sunspot

minimum (V = I00 My) and s_spot maxim,_ (V = 600 My). The

circles ar_ axper_m_-ntalresults quoted by Quen_ (196_)°

Figu_ 5 _h¢ time variations of the modulating potential, V, over the

last sola_ cycle. ._e oonCinuou_ line is the potential cozwes-

rocking to the a_erage n_nthly ,._untin8rate of the Ottawa

neutron monitor° _:,divid".._l4e_azmination_ of V from various

intensi_y meas_nt8 _6e durin_ balloon flights ar_ also s_mwn.
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During four Forbush decreases There have been several

' determinations of the spectra. The corresponding values of

V (measured before, during and after the Porbush decrease)

are shown connected by dotted lines.

PiEure 6 Predicted ratio of differential intensities of protons and

heliun nuclei as a function of riEidity. Experimental

points are from emulsion experiments in 1963 and 1964, Freier

and Waddin&rton(this conference)=
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i Low Energy Multiply Charged Nuclei in the

P0 S. Freier, Jo So _ao and Co J. Waddin_on _'

_ Nuclear emulsionsmounted in plate "shufflers"were exposed at some

i;_,;._,2.5 _cm 2 over Fort Churchill in 1963 and 196g= These emulsions have been

_.;;i:examined for the tracks of multiply charged, Z ,_3, nuclsi, with particular

_,,,.-_':emphasis being .paidto _ose perticles brought to rest in _he emulsions.
,!A,'.I

_-:,_Prom _hese ending particles it appears that during this period near solar

_..,,,_}i!_minimun the ratio of L to H-nu_lei with 170 __E __360 _eV per nucleon,
_ correctedto the top of the a_mosphere,is 0o55.+ 0o18_ which is appreciably
_.:_.greater _han The value observed at higher energles. Also given are values for

_i: i the total integral intensityof all Z __3 nuclei in each year, and _e differ-

*Supportedby Office of Naval Pesear_sContrac_ No° Nunr 710(60)°
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• Io Introduction

Fop many years great interest has been a%-tachedto the question of the

abundance of the L-nuclei, lithium, beryllium and boron in The pm_ry oosmic

r_diationo Ho_mveP, not until 1961 at the Kyoto Conference was it possible

to conclude that there was general aEreement that there existed a finite

intensity of L_nuclei in the primary cosmic r__diation (WaddinEtcn, 1962)o Even

This conclusion applied only to those nuclei with kinetic enerEies , E, of more

Than 1o5 Bey per nucleon° Since then it has been genemally accepted t/%atthe

ratio of L to M-nuclei havinE E _ i05 Bey per nucleon is about 0°28° At higher

energies, the ratio was only approximately kno%n_ while at loop ener_.es there was

some evidence that the ratio increased, eog0 Koshiba et al, 1963o This increase

• in the ratio has frequently been interpreted as implying that lo_r enez_y particles

_averse more interstell_m.-matter than do those of higher ena_gyo However, it has
Q

recently been pointed out by Hildebrand and SilbembePg 9 1965, that due to A/Z fop

L-nuclei being 2°2 rather than the 200 characteristic of M-nuclei m much of the

obsez_ed vamiaticn _n t21isratio could_ instead, be due to solar modulation° If

this is indeed the case, then it might be expected that a measurement of the L to

M PaTio at a tiT_ near solar minimum would _ve an appreciably lower value than

Ithose obtained in times of solar ,Taximumo Fop t_s reason this paper descTibes

provisional results on the observation of L and M-nuclei brought to rest in _wo

emulsion stacks flcz_nin plate shufflers in 1963 and 1964 at a time when %he

counting ?at6 of the Mount Washington neutron monitor had an avemage val_e of 2350

per hour_, ioe0 approximately 4% below t2Lerate typical of solar m_nimum_ but san_

17% above that at solar,maximum°

•Due to the severely limited statistics of _his exper_t the results of T/%e
two flights have been combined in considering the L/M Patio° In fact_t2_
counting Pates of the M_0 Washington neutron monitor differed only by 2°8%
between %ha two fiights_

00000001-TSD01
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IIo Experimental Details

Two shuffler stacks were exposed over Fort Churohi11 in 1963 and 196_o

The first of 1_ese floated for ii hours at 108 ross, 1_e second for 12 hours at

2oq mbso The ooLnt_ rates of the Deep River super neutron monitor were 6027 and

6195, ms_i_ly. Electmons,protons and helium nuclei have also been studied

in these stacks (Waddi_g_cnand FTeiem, 1965)o

A scan was made along a line _o5 ramsbel_ the %up edge of the emulsions

for all %Teeks havins more than 7 times the minimuT, ionization,lonser than _o5 ms

pep pla_e and zenith angles less _%an q,5°o These 1_sokswere followed,2nmoushthe

emulsionsuntil the particles cams to resto _ _ staak 9 or p_d nuclear

intex_ti_mso An appmoxiamteLm_dicationof The charge of Chose identifiedas

mult/ply ehaz_ nuclei was pmoviM by 6-my ootmSs0while %hose Zha% came %0

zest wez_ identifiedfrom cumulativeand diffez_ml/al6-my countsmade on the endin8

poz_ions of the tz_.ko

IIIo Results

In oz_er ¢o detemminethe L/M Patio at low enerKies only _hose nuclei which

oame to rest in The ea_isicms were considemedo _ _ ciiamnsionsof the stack

and _ amount of overlylnEma_ter, it was _t Chat these nuclei were only

eff_:¢entlyobserved in The mange of kinetio energies 170 to 360 Mev per nucleono

Then, by giving each ending nucleus a weight which de_ndsd on its path length and

the mean free path of _hat species in nuclea_ emulsion, it was possible ¢o cal__la_e

_he observed L/M r_tio as being 0o56 ! 0o18o This, when corrected to _he top of

the amosphe_, becamo

rLMo (170 --<E --<360 HeWn) = 0055 --+0o18

which, even wi_h This poor statisticalwei_ht, iS appreciably greater _ the value

of 0028 observed at higher ens_gieso However, whether this diffez_n_e could still be

00000001-TSD02
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" attributed to solar modulaticn must await the improvement of the statistical

w_ight of this result.

One question that always arises with emulsion experiments involving

meastE_mm_ntsof charge resolution is whether charEes have been correctly identified°

A rouEh verification of the essential validity of _Le result obtained here is

afforded by examininE the absolute intensity of ending M-nuclei ,nd comparing it

with the values obtained by other workers0 Figure 1 shows the value of

(1o50 + 0o33)10=2 nuclei/m2stemoseCo MeV per nucleon between 170 and 360 MeV par

nucleon ob%ained in this experiment compared with the values obtained by Liraand

Fukui, 1965 from a recoverable satellite flown a_ a time intermediate between

these two fliEhtso The aErr:ementis vezy reasonable° Also shown in this figure

• is a curve representinE the spec%Tum of heliun nuclei observed in the 1964 stack

(WaddinEton and Freier_ this conference) toEethem with the same curve after it

has been reduced by a factor of 6o5o10"2_ the ratio of M to He-nuclei measured

at higher energies (Waddinston, 1962}o It can be seen that _his latter curve

is a good fit to the data_ implying that ionization energy losses have played a

z___hernegligible Pole during the inter_tellam propagation, as otherwise The

observed data would have been depressed below the predicted curweo This point is

discussed in more detail and T_kinE account of the effects of solar modulation in

a papem on very heavy nuclei presented at this conference (Waddin_on and Fr_ier 9

thisconference)o

The final results obtained from this experiment are those on the total

intensities of Z :,3 nuclei° In a previous experiment the results were reported

On a numbe_ of such measuz_ments made at many different levels of solar modulation

(Preier and WaddinEton, 196_)o In this work_ the intensities were quoted in the

form of those tha_ would be calculated from an observation made under i0 g/_ of

air and i an of emulsion overlying the detecting lineo The variation of these
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intensities with The cou_tinE ra_e of _he Ottawa neutron mQnitor was sho_ as

PiEure 8 in the above paper. This figure is reproduced here as PiEure 2, with

the two intensities observed here superimposed. There is a surprisinEly lares

difference between these intensities which, however, partially agrees with the

previous datao The reason for this discrepancy is not at all clear at this

time, particularly since no such difference _as observed amonE the ending M-nuclei,

and since the apparently low intensity value is the sun of _wo entirely seperate

experiments which were in _ly good agreement.

L
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" FI gJ'_ CAFH C_S

FiEur_ 1 The diffe_ntial energy spectra of M-nuclei as observed by Liraand

Fukul, 19651 and in this experiment. Also shown are the differential

enerEy spectra of heliun nuclei as obsePved in 1964 and when meduoed

by the abundance ratio of M ¢o He-nuclei.

_Eure 2 The vamia¢ion of the %oral intensi%y of Z >_ 3 nuclei 0 J&o (corT.) with

The countinE rate of The Ottawa neutron I_r_:l:oz,. Curves 1 and 2 az_

derived from similam cmza_s fop He-nuclei with enerEies EreateP Than

200 and 500 MeV perunucleonj respectively t by multiplyinE by The ratio

of JAo (corm.) to JHe' Curve 3 is The least mean square fit to all

• The previous data with N > 2500. The results from this expez4.amntare

shown by +.
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';,.'' VERYHEAW LOWENERGY COSMIC RAY :"_LEI*

'_ C.J. Waddingtonand Po S. Freier

A stack of nuclear e_nulsionshaving a surface area of 900 c_n2 and mountedin a pressure ac¢iva%ed emulsion "c_mera"was exposed d_ 196_ at a residual

........measure the intensi_yof all nuclei havinE charEes of 20 om Ezma%em and %he

,_:i_!:differentialenerEy spectzum of these Z _)20 nuclei between 2g0 MeV/n and

650 MeV/n. This r_uge of energies covers %he region where nucle._ of different

charEesmish% be expected to show the Erea%es_ speci-zalchanges due to pz_aEa_ion

_:,%_::'-oz"othe_ causes. Provisionalresults are reported cn %he enerEy spectrumand
._:t:%',"°_

ii:)i_i_!::;intensitiesof these nuclei. These results show *2mr, if ac_le_a%ion processes

_,_ are neglectedt %he mean acorn% of inters%ellamoP source ma%ePial tTaver_edby

_i;r;i:}¢;_3_esenuclei does not exoeed 2 _cm 2.
L'::

* Supported by U. S. Office of Naval Reseamch_,dem C<ntmac_No, Non_ 710(60).
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I. Introduction

Experimentalexaminationof cosmic ray particleswith dissimil_ charge to

mass ratios provides a valuablemeans of investigatingthe solar modulation

process,while a similar examinationof t_hoseparticleshaving low cosmic

abm_dancesgives an indicationof the mmlear fn_ntations produced du_ing

propagationand thus indicatesthe mean amount of material tTaversed since the

initial accelerationprocess° In an analogousmanner, sn examinationof those

cosmic _ay particleshaving ve._ high cha_Ees might be expected to provide

informationon the ionizationeffects occurringwhile the paz_iclesar_ propagating.

SLnce such effects will be proportionalto the square of the nuclear charge, clea_ly

the highe_ charged panicles will affordthe most sensitive indicatorsof these

. ef£ects0 This report describespro_sional observationson the energy spectrum and

absolute abundancesof the cosmic ray nuclei which have nucleaD chargesbetween

Those of Calciun and Nickel nuclei, 20 < Z < 28, VH-nucleio Less Than 20% of the

available data has bean analyzed Thus far and consequently,the final results and

conclusionsmay differ from those qucted here°

II. ExperimentalProcedure

Because of the extremely low absolute intensi_yof VH-nuclei,any expez_t

which hopes to detect a reasonablenunber of these nuclei must haw a large area-

so.lidangle exposure rime factors In t/_isexperiment,the .particleswere detected

in a stacM,of Ilfo_d G5 600, stripped amulsionsmade up of q00 12" My 2".pellicles

and 50 12" by 6" pellicleso These emulsionswere mounted in a verticalplane with

_ 12" edge horizontal so that the total collectingarea of the stack was shout

900 cm2_ Plar.ed over _his collectingarea and actlng as 'shutters'were t_o gla_s

backed emulsi_s mounted in a mechanical frame so that they could be swur_ out of

the way° This emulsion 'camera'was moun_ed in a press,_ tight sphere and the
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shutters connected to the logic circuits of an alpha_ron pressure measurinE device

so that they would open when the pressure fell to some predetermined value and then

close again after the pressure increased to some other predetermined value.

This device was flown from Port Churchill on the 22nd of July 1964 and floated

for approximately ii hours at a mean residual pressure of 2oi robso Due to a mal-

function, only one of the _wo shutters opened at the preselected pressure of 3 r_.

It had originally been intended that this flight be simultaneo_q with a rocket

shot by Fichtel of t:heNASA group to study still lower energy nuclei. Adverse

winds delayed the rocket shot by several days, but all indications are that these

two experiments can be directly ccmparedo

The processed emulsions have been scanned alone a line 2 ,ms below hhe top

edge for tracks as hea_y as those produced by fast nuclei having Z-18o All such

tTacks having a mean projected length greater t.han2 ramsand with zeui_h anE!es

of less than 35° were recorded° Thus far, all the sc_ has been done in the

area covered by the shutter That did work, but as yet no attempt has been made to

identify thosa particles which entered while The shutter was closed, Once _bis has

been done_ it will be possible to individually remove Those particles whose energies

have been incorrectly calculated because they entered while the stack was under

appreciably more ma_er Than at ceilir._

Every particle found in this manner was traced through the emulsions until it

came _o rest_ made a nuclear interaction 9 or passed out of the bo_tum of The

stack. With The stack thickness employed here end for This exposure VH-nuclei will

end in the emulsionst and Thus reveal their energies very accurately, in the

approximate energy interval 240-650 MeV per nucleon. The greatest uncer_.aint7in

these energy estimates arises from the uncertaint_jin the charge determination°

If, for examplej the uncertainty in the charge of a VH-nucleus is +_2 units of

_rge 0 then the energy estimate has an uncertainty of less than + 7%°

A
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ChafEs determinations thus far have been based on the measui.ementof delta

rays having a lateral range greater than 4o51JoAssignments of charge, based on a

scale built up from nuclei of small charge 9 such as helium and carbon_ using

different range delta rays for Z < 8, leads to a peak of iron nuclei and a

subsiduary peak at calcium° Purthezmore, there is a clear absence of particles

between the assigned charges of 20 and 16o These features all resemble those

observed at higher energies and give confidence to the general correctness of

the charge assignments° Nuclei which did not come to rest in the emulsion were

examined for chanEes in ionization by making delta ray counts at each em_ of the

track° These measurements allowed the velocities of VH®nuclei to be reasonably

determined up to the region where the ionization becomes essentially independent

of velocity and consequently, allowed charges to be assigned to these faster

nuclei° In the case of nu_-leimaking interactions, the velocity could in every

case be determined either by icnizatlon change , or from a study of the fragmentation

products o

III o Results

Preenthe measuxements outlined in the previous section, it was possible to

determine the differential energy spectra of VH-nuclei between 2t_0and 650 FmV per

nucleon, the integral intensity of VH-nuclei above 240 MeV per nucleon and a

differential intensity of nuclei with 16 i Z • 14 between 210 and 350 MeV per

nucleono

The differential ene_Ey spectrum of the %_I-nucleiis shown in Figure 1 and is

based on the observation of 93 nuclei. These data have bsen corrected to the top

of the atmosphere by usiT_ a simple absorption mean free path of VH-nuclei in air

of 15 g/c_2, which for an extrmme altitude flight such as this, only results in an

approximately 20% correction_ Figure I s_ws the results of smaller statistical

waight reported by Liraand Fuktd (1965) for VH-nuclei.observed in emulsions flown
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on a recoverable satellite at a time when t/%esea level n_utron monitor counting

rate was 3°4% less TJ_n that prevailing during this exper_to By analog7 with

observations on helium nuclei 9 Waddington and Freier (this conference), these

satellite results would be expected to be not more than 20% lower than those of

this experiment due to solar modulation° In factt FiEure 1 shows qualitative

agreement°

The integral intensity of VH-nuclei having E . 240 MeV per nucleon_ after

correction to the top of the a_osphere, was:

JVH (E A 240 MeV/n) --1o40 _+0oi0 nuclei/m2osteroseco

This value 9 taken toEether with the comparable intensity of helium nuclei measured

in a fliEht made four days earlier_ when The neu%Ton monitor counting rate was

0°7% lessj of JHe (E __240 MaY/n) = 266 _+17 nuclei/m2o steroseco WaddinEton and

Freier (this conference) j leads to a ratio of VH to helium nuclei of (5_27 + 0°50)

10-3o This can be cumpared to the value of 5o9o10-3 previously measured for high

emerEyl E _ I°5 BeY per nucleon_ nuclei_ Waddin_cn (1962)o

Finally. it is possible to calculate a sinEle differential intensity value

for those nuclei havin E 16 __Z >_14 be%wean 210 and 350 YeV per nuclecno This

value is_ (dJ/dE) = (11o5 + 204) x i0_4 nuclei m2steroseco MeV per nucleon°

IVo Discussion

The differential enerEy spec%Tt,n of the VH-nuclei can be compared directly

with that observed for the helium nuclei four days earlier. Wadd_on and Preier

(this conference)o If ionization effects are unimportantp then the spec_-um of

the VH-nuclei should be given by that for the helium nuclei when this latter spectrum

is reduced by the relative abundance of VH-nuclei to helium nuclei° Figure 2 shows

the helium spectrum and the resulting predicted VH spectrum° It should be noted

that very little difference would be made if instead of using the VH-nuclei to
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helium nuclei _io for E > 240 MeV per nucleon given above, the ratio for
.ram

" E ,_650 MeV per nucleon _re used, (5o5 --+006) I0-3_

F_%mination of Figure 2 shows Thatj with the possible excepLicn of the lowest

enerEy point 9 the data are in reasonable aEreemmnt _...ththe predicted cur,_.,,which

implies essentially no measurable effect due to ionization losses° An indication

of the expected effect of passage thmouEh as little as 2 g/cm2 of int,_stellar mattem,

reglectinE fragmentation, which %Duld further reduce the predicted spectra, cm_ be

obT_/ned in the following manner° If it is ass,anedthat the source spectrun of

these nuclei is a power law in total energy per nucleon_ so that (dJ/dE) - Ki

(E + moc2)-2°5, then it is simple to calculate The shape of the unmodulated helium

and VH-nuclei spectra resulting from the passage _-ough 2 g/an2 of interstellar

hydroEeno This unmodulated spectrum of helium nuclei can be normalized to the

• observed modulated spectrum by assuming an arbitrax_ value for the inteEmal

intensity at sc_s enerEy0 FiEur_ 2, for example_ shows The resultant spectn_n

%_en JHe (E > 240 MeV/n) is assuned to be 300 nuclei/m2ster0seco MeV per nucleon°

The differences be%_4eenthis spectpum and that expemimentally observed represent

The modulation functions at every,enerEyo The unmodulated spectr%mnof The VH-nuclei,

after passage through 2 g/cm2 can now be similarly normalized, using the VH to helium

nuclei _a_io0 This ratio should be that of the unmodulated spectra9 but since it is

bein_ implicitly assumed that both these groups of nuclei are similarly modulated,

the ratio should be_unaffected° The resulting unmodulated spe_ is shown in

Figure 2_ together with the spectrum produced when this unmodulated spectrum is

operated on by The modulation functions found from the spectre of The helium nuclei°

. -Because of this feature of operating on the theoretical spec%x_m with the deduced
I'

modulation function_ it is apparent that the resultant ppedicted spectzum is la_Eely

independ-.ntof the original J(_ E) intensity value c_sen to normalize _he theoretical

spect_,_ Fur_h_, since the modulation is presumably a Z dependent function_

00000001-TSF03



- 31 -

while ionization loss is Z2 dependent The predicted spectra will be still further

depressed if it is assumed _hat the mean amount of matter traversed is Ereater than

2g/ 2o
Examination of Figure 2 shows That The observed intensities ape abou_ a factom

of two hiEher "_%n Those predicted af-teP%Taversal through 2 g/an2, but in reasonable

agreement with those expec_.edif ionization p]ay_ r.oappreciable Pole during propa-

gation_ In view of the p'_d.sional nature of This data0 and the uncertain assumptionl

u_demly<n_ the analysis given above, it is pmesun_.blyjust possible to reconcile

These da%a wi_h the passage of 2 g/_.2 of intemstella_ _te_, but this must surely

be an uppem ]/mito If this result is incompatible with path len_.thsderived from

the composition, then it will be necessary to conclude r_natsome aecelemation,

proce sses take place during the majority of the time while The paP%icles tPavePse

the ma_er _> as to ovel_ome The influence of the rJe-accelerativeionization losses0
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PIGURE CAPTIONS

Figure i The differentialenergy spectrum of VH-nucleias measured in this

experimentend comparmdwith the data of Liraand Fukui (1965).

PiEure 2 Differentialenergy s_ctra of heliuu and VH-nuclei for various

assumptionser_ models, see _exto
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.....:., Electrc_s, Hydrogen and Heliun Nuclei of the Cosmic Radiation

_:_:":' As Observed in 1963 and 1964 _

...._ Co J0 WaddinEton and P0 So Preier

;'$': ,,. ,,.

/.,

k,. '.

_,:_- Nuclear emulsions were exposed over Fort Churchill in plate "Shufflers"

_'_:__,_:.';_:_.!i.flown in 1963 and 1964o Preliminazy data on the low energy hydrogen and helium

_:_._::!.:_nuclez observed _n 1963 have already been rep.ortedo These observations have now
[_i!_i_been extended to cover a w_der range,and to L_clude electrons° A similar analysis

_"__ has been made in the shuffler stack flown in 196 at a time when the counting rate

_'.'. of high latitude sea level neut1_n monitors had Lncreased by 2.8%° In both stacks

D_ the energy spectrun of the hydrogen nuclei has been studied over the energy range_

_!?!. available techniques° Similarly the 1_eliumnuclei have been studied over an energy

' ":__ range of 70 MeV/n < E < i03 BeY/n, so that for _he first _ime those two components

have been studied over a widely overlapping range of rigidi_ie_ 007_ < R < g.0 BV.

_: Integral and differential intensi_ies for both years are presented, as are those

'_i_44._ on the small number of electrons observed in each stack° Analysis of _hese

_ii _esul_s shows tha_ in This energy range, the modulation cannot be solely velocity
)i dependen_ and that there exists a clear discrepancy be%_4een_hese results and some

of _hose reported for the IMP-I satellite°

* Supported by U° So Office of Naval Research under Cont_aot No. Nonm 710(60)°
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' I o Introduction

ElecTrons, hydrogen and halium nuclei present in the primary cosmic radiation

wer_ studied by the authors with a nuclear emulsion shuffler detector flown from

Fort Churchill, Manitoba, in 1963, Freier and Waddington (1964, 1965a)o This

lattem papem will henceforth be referTed to as Paper I0 Here the r_su!ts are

r_ported of a similar study made with a s/milsm detector flown from the same

locality a year later, in 1964, at a time when the influence of solar modulation

had been appreciably rela_{edand the counting rate of The Deep River neutron

monitc_ had increased by 208%, The methods of analysis employed were almost

exactly those described in Paper I and the reader is referred to that paper

for details0 The main difference between the _o flights was that the second

. was at an average r_sidual pressure of 2.4 mb compared with the 1o8 mb obtained

in 19630
O

IIo Experimental Results

The observed proton intensities were corrected _or the effects of the over-

lying atmosphere in a manner similar to that described in Papem Io Figure 1

shows the intensities of secondary protons produced in the overlying emulsion as

measured in 1963 and 1964, together with the intensities predicted from interaction

data° Also shown are the expected intensities of secondaries from 2,7 g/cm2 of

air, and this curve, together with the observed intensities, leads to the primary

intensities shown0 The use of the shuffler technique eliminates aunynecessity for

making corrections for paDticles entering during the ascent phase of the flights°

• The _maining corrections on tb_se nuclei, and on the heliun nuclei, in particular

those for absorption t follow the procedures given in Paper I°

_"]ledifferential energy spectra a_ the top of the atmospher_ of the hydrogen

and helium nuclei are shown in Figur_ 2, togethe:,with the spectra d_serve.din

1963t the spectra predicted from an electric field mod_l of modulaticn at different
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modulating potentials, Freier and Waddington (1965b), and the low energy hydrogen

and heliun data obtained from The ItS?satellite, McDonald and Ludwig(1964)_ Fan

et al (19S5)_ Gloeckler(1965)o

The differential enerEy spectra of the electrons, not at the top of the

a13_osphere,but under 2°7 g/cm2 , are shown in Figure 30 Also shown on this figure

are the values obtained in 1963 under 2oi g/cm2, the magnitude of the meson spec%Tum,

as an indication of the secondary conT_%inaticn, and the spectrum recently reported

by L'_ureux and Meyer (1965) under 4ol g/cm2o These data have not been corrected

to the top of the a%Inospherebecause of the uncertain nature of this correction°

However, as an indication of the possible magnitude of such a correction, Figur_ 3

also shows a curve for _he intensities of secondaries as proposed by L_Heureux and

Meyer (1965), after being suitably corcected for the lesser atmospheric depT/_of This !

experlment o

I_ o Discussion

Long term t_poral variations in the relative abundances of nuclei of a

particular species are a consequence of the solar modulation mechanism° Any

reasonable model of this process should be able to predict partic_1.arvalues

for the ratio of the intensity at one time to that at another time° However, the

relative abundances of nuclei of different species do not necessarily vary as a

consequence of solar modula_ionso Indeed, it is difficult to envisage a physically

reasonable model which would predict temporal variations between nuclei having

similar charge to mass ratios0 Nuclei with dissimilar charge to mass ratios may,

on the other hand, well show clmnges in their relative abundances as solar modulation

levels change, and any specific model should be able _o predict these variationso

As a consequence9 a study of the variations in the relative abundances of similar

nuclei at two times, and of dissimilar nuclei at a particular time, provides a strong

test of any modal proposed to describe the p|,enomenaof solar modulation0
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Two models of perticular interest are the electric field model recently

revie_d by t_e authors, and the solar wind model proposed by Perker (1963)

in which it is assumed That an equilibrium condition is established between the

sweeping out of cosmic ray particles by the solar wind and Their inward daffusicn

Through scattering by irregularities in t.heinterplanetary magnetic field° This

model leads to a _modulationfunction of the form exp (-_n/v)j where _ is the solar

wind velocity_ n is _he n,_Rbe_of effective mean free paths between _b_ point of

detection and infinity and v is the particle velocityo In this model, n is a

constant for low rigidity particles but inversely proportional to the square of

the.particie_8 Eyro-radium at higher rigidities° This model, iLke the electric

field model, can be expressed analytically, but does have an unfortunately larEe

nunber of adjustable parsnmters_ however, by making some rather arbitrary

assumptionet it is possible to obtain predictions which can be compared with

experimental data.

In oz_er to facilitate the comparison between the predictions of the theories

and the experimental ob6ervations, Those data obtained from The IMP-I satellite

on law enerE_ protons and helium nuclei have been included in this analysis°

Briefly, these authors report that during a time period when the counting rate of

The Deep River neutron monitor increased by 1009%, The proton intensity bet,men 25

and 80 MeV incmaased by less than 10%, while du_Lng a counting rate increase of

i_35%, the intensity of helium nuclei between 30 and 80 MeV per nucleon showed

an appreuiable and well defined increase° In order to compare, at lea_t approximately,

these data with the results of this experiment, in which the cotmting rate of the

neutron monitor increased by 208%, the percentage increases of _le IMP data have

been doubled°

The intensity ratios obtained in _is experiment i both for protons and for

helium nuclei arc shown in Pigurm 4 as a function of kinetic energy per nucleon,

rii(E), together with the IMP data and the predicted variaticns from the electric
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field model. In spite of the re%hem poor statistics, T_o points are apparent°

Firstly, since particles of the same energy pep nucleon have the same velocityt

the clear divergence between the protons and The heliun nuclei ratios shows that

in this energy range The modulation cannot _ solely velocit_ dependent° Secondly,

The more rapid variation of the protonsThan of the heliun nuclei observed in This

experiment can hardly be consistent with The reverse behavior exhibited by the

IHP results° This is in spite of The fact that in each case the overall intensities

measured are in good agreement, see Figure 2o The variation in these ratios pre-

dicted bv the el_ct_ic field model on the basis of a change in modulating potential I

from 200 to i00 My are also shown and seem to be in reasonable a&noeementwith this

data, but not with those from IMP0

In Figure 5, the intensity Patios are plotted as a function of rigidity,

£ii(R)o It is apparent that in the reEion where the protons and helium nuclei have

similar rigidities These dam and the IMP helium data are in good agre_t with the

concept of a purely rigidity dependent modulation. A modulation curve of the fo_

proportional to inverse rigidity is shown normalized to a 100% increase at 005 BV

z'iEidityo Th_ IMP proton data e_ in complete disagreement with these conclusions°

Also shown are The predictions of the electric field model with the same assucption

as before° These predictions appear to be in rsascr_ble agreement with the results

obtained here but do nut fit either The proton or heliun IMP data.

Finally, Figure 6a sho_ the abundance ratios of the protcns to helium nuclei

as a func_icn of the kinetic enerE_ pep nucleon as measured in 1963 and 1964o These

data can be compared with the variations predicted by the electric field model and

Par'_er'smodel° For This comparison, The predictions of Parker's model have been

calculated by ass_ning that the differential e_erEy spectra at different levels of

modulation are those given by the electric field model and that the critical rigidit_i

at which a particle has t_m same gyro-_dius as the scale size of the ma_/etic field
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- irreEularities is that of a 300 _V protc_._or a 80 MeV per nucleon bslium nucleus°

With these assu_l:ions it is possible to ualculate the relative ratio of proton

to helium nuclei observed to that ratio prevailing in interstellar space. This

variation is shown in PiEure 6bt togeThe_ with that predicted by the elec%_-ic

field model° A comparison of PiEures 6a and 6b 8uEEests that possibly Pair's

model is a sumewhat be_-terrepresentationl but The errors are sufficiently large

and the behavior at high enerEies suffic/ently diverEent j that this is not a very

stror_ confirmation. It may be noticed that if Pa._k_'8 model, wiTh the assumptions

made here_ is indeed a reasonable representation, Then The modulation should be

purely velocity dependent for protons with enerEies less than 300 MeV and helium

nuclei less than 80 M_V per nucleon. Once aEain, this does not agree with The

IMP data°
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£_GURE CAPI_ONS

Figure 1 The differential ener_/ spectrum of the primazy and seccndazy protons

observed in these experiments_ The secondaries produced in t.he

3 g/an2 of emulsion overlying the scan line are shown for 1963 and

1964 together with the predicted curve 0 _ile Those predicted for the

2o7 g/cm2 of air above The emulsion are shown as a dashed line. Those

protons observed at the scan line are labeled "prima1_ plus secondery" t

wh_le The result of making the correction for seccndary protons is

shown by The points labeled "primary"°

Figure 2 The primary differential energy spe_ of T/_eprotons and helium nuclei

as observed in 1963 and 1964o The c__-_esshown are the predictions of

th_ electric field model of solar modulation at various modulating

potentials, V in My. The IMP results on each species of nuclei are

shown by The do,ted straight _ineso

Figure 3 The differential energy spectrum of electrons. Also shown arm the spec_x,a

of mesons observed in the %_o years, as an indication of The secondary

cuntemination, and the spec_run recently published by L'Heureux and

Meyer (1965)o

Figure 4 The ratio of nuclei of a particular species in 1964 to those in 1963

at a specific energy per nucleon° The predictions of the electric

field mod_laticn model are shown as dashed lines, while _he IMP-I data

appears as solid lines.

Figure 5 The ratio of nuclei of a particular species in 1964 to those in 1963

at a specific rigidit>° Similar to Figure 4 except that a curve

representing a modulation inversely proportional to rigidity is also

shown,
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, Figur_ 6 (a) The ratio of protons to heliun nuclei as a functicn of kinetic

enargy per nucleon in 1963 and 1964o
e

(b) The ratio of the above ratio to that prevailing in interstellar

space as predicted i,ythe electric field and Panker's models of

sola_ n_dulation at different levels of modulation measured in terms

of equivalent electric potential in My.
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" of Primary Cosmic Rays with IonizaticmChambers_'

_' S, Ro Kane and J_ R. Wincklem
.,._ School of Physics and Astroncmy

./:0;,..

' and

'"_" Ro Lo Az,noldy

• H_,eywell P_searuh Center , __

Hopkins, Mbme so_a

"_"'_ ABSTRACT l

__,._. It is shown that the response of ion chambers in The atmosphe2._and in free

'_:Ji:.space is peaked ovem narrow rigidity intervals_These are Io5 - 2.5 by, 2°5 -
'_"t _.,

i_i_/./_:3.5 by and 300 - 4o0 by for free space, high latitudeballoon and Minneapolis

_"_ balloon chambers, respectively0 Using these results and meas_ts made with

_:iii_ The Pioneer V, Mariner II and 0GO-A ion chambers, the rigiditydependanoeof the

_i_!i'ilong-returnmodulation during 1960-1965is found to be consi_ten_with The form

_,_i_:p-_ where 8 = 008, The solar c_cle effect at i0 g/c_ as measured by balloon

_t_'_ flights at Yd/lneapolis and high latitudes is .oPesentedo A phase lag of abou_ one

_i)_ year between The total ionizationand sunspotnumbers exists _ku-oughoutthe cycle.

_i A correlationplot of the high latitudeballoon ionizationrate and The Deep River
_._ neutronm_nitor for 1958-1965 shows a smoothrelationshipbetween The T_o rigidity

ranges. The rigidity dep_mdenceof the short-termmodulation as measured wi_h

space ion chambers in several cases is shown to be differentthan %he long-termo

The "turn-up"in ionizationin The atmosphereat kigh latitudesobserved a_ solar

n/nimun can be attributedto The presence of low energy S nuclei in The primary

radiation atsolar minimum° The peak ionizationintensi_y of the present solar

minimum,appears to have occuzTed in May 1965o __

_Thiswozk was supportedby a 8rant from NASA under Contract NAS5-2071o

-- me "I In i I , -- I --
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" I. Mean RiEidity of Response

In _his paper w_. shall e ,aluate quantitatively _he riEidity response of

ionization chambers flown in the hiEh atmosphere and in deep space. The riEidity

dependence of the s_ cycle modulation of the pPimary cosmic Pay spectrum will

then be investiEated usinE these results. The differential response cumves for

ion chambers as determined by Callender et al_ 1965 and Kane et al, 1965 are

summarized in FiEure 1, The balloon curves are derived from latitude surveys at

I0 mbs by NehePg 1965 and ._ebe_and Anderson 9 1962. The free space ion chambeP

repsonse curves were obtained by calculation using a kn_4n prdmary spectrum fop

the OGO-A ion cb_n_er by Kane et al, 1965o One notes in Figure 1 that the response

is peaked o_.m a narrow migidi%y rsnEe with a shift of the maximun dm4nward at solar

. minimum. The mean rigidity of response is calculated by integrating the rigidity

over these response curw_s above the appropriate cutoff as a lowem limit of integ-
4

ration° The r_sults obtained are: fop free space, 2.9 BV decreasing to 2.1 BV at

solar r_nimum_ and fop a Minneapolis 10 mb io_ chamber, 4.0 BV decreasing to 3e0 BV

az solar minimum. We now compare "_nFigure 2 the fractional increase of ion chambers

@urine the period 1960-1964 with the fPaci-icnalchange in helit_ nuclei in various

rigidity r_nEes. This c_L_ison is made aEainst the fractional increase in the

Mr. Washington neutron mcnitc_ and will serve as an independent check on the

correctness of the mean response rigidity evaluated above. The response rigidity

infected from the ion chamber curves in FiEure 2 considered in relation to the

helium nuclei cur_es does i indeed, agree with the calculated mean response _iEidity

.   ,ivenabove°

II. Solar Cycle Variation Measured with Balloon Ion Chambers

i

In Fii_u_e3 we cumpare the monthly average sunspot nunbez_ with the i0 mb

ionization measured at Minneapolis and at high latitude with a lonE series of

balloon fli_t,_. The be31oon data is expressed as a fractional change from the

! November 1958 monthly mean. Values in 1954 and 1955 are from data normalized from
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H. V_ Neher (see C_llender et al, 1965)° This figure shows the large solar

cycle modulation effect in balloon ion chambers and the la%-itudedifference betwee'_

Minneapolis and Churchill which disappears at solar maximum and reappears again

at solar mirdmumo The cosmic ray curve, like the sunspot m, is asymmetrical,

drops rapidly and recovers slowly° An apparent more or less constant phase lag of

about one yearnexists between the cosmic ray rates and the sur_spotntlnbersall the

way through the cycle, This phase of about one year, if att:._ibutedto solar wind

effects propaEated from The sun with a speed of 300 km per second would imply a

modulation scale size of about ]50 astronomical units. In May of 1965 the high

latitude ionization rates at I0 mbs have slightly excee_._dtheir value at the

previ _us sunspot minimum periodo The smooth relationship between the lone term

modulation of The 3 BV range of mean riEidity and The 15 BV range is shown in

PiEure _ whe1_ a correlation curve of high latitude ion chamber data and the

Deep River neutron mo_dtc_ is given°

III. Ionization .Chambersin Free Space

In Figure 5 we have assembled on the same normalized scale, the free space

ion chamber meas_ts made on Pioneer V, Mariner II and 0G0-Ao These are

plotted aEainst the Deep River neutron monitor hou.'lyrate and cover the period

1958-1965_ that is, during almost the entire upward trend in the cosmic ray

_tes since solar maximum, The inserts at the right of FiEure 5 show expanded

correlation plots duminE the history of each of the three satellites. The lone

term correlation is a linear onet but one notes that the slope may be different

for The shorter te,1_variations shown in the inserts and is markedly so for

Pioneer V and also for Mariner II. Both of These spacecraft encountered large
,:,

Forbush type decreases in the cosmic ray intensity. This may be taken as evidence

that the rigidity dependence of The short and ionE term variations are not The same

over the extz'_r_ range covered by the free space chambers and neutron moritors.

In Fislre 6 The daily average ionization rates Obtained from 0G0-A when the satellite,
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A

was at apogee, free of the influence of the maznetosphere_ are plotted through the

entire history of the 0GO-A and fop comparison the Deep River neutron munitom.
o

One notes the general similarity of the two curves e%en fop short term changes.

The life history of 0GO-A covems what appears to be the peak cosmic ray intensity

of the solar minimum pemlod which occumred in eamly May 1865. The OG0-A data

includes also the rather unusual sudden increase in cosmic r_y intensity on

approximately 1 Decembem 1964.

IV0 Low Rigidity Modulation Spectzmsnt

Using the mean response of ion chambers and the data given in Figure 2 the

riEidity,dependence of the lone tezm modulation of the pmimaz7 spectrtm for the

time period 1960 to 1964 and in the rigidity ranze 1.5 - 4 BV can be determined.

• The fractio_ml increase in the ion chamber rates and helium nuclei intensities

are plotted versus rigidit> in Fi_lre 7o It can be seen that The observations

in Figure 7 are consistent with the modulation of the form MP-8. The straight

line in FiEure 7 corresponds to 8 = 0o8. If the total period is divided into

two parts_ (see Kane et al, 1965), one finds that for 1960-1962, 8 = 0.8, whereas

'" for 1962-1964, 8 = i.4o

Vo Ccammmts on the "Turn-up" in ionization Curves Observed at High Altitude

As a r_sult of balloon measurements duminE _e 1954 solar minimun, Neher,

1962, has observed a sharp increase of ionization near the top of the atmosphere

at k[Eh latitudes= This observation has been frequently discussed, but the cause

has not been determined° A_empts to fit %he ionization depth curve with proton

spectra estimated for solar minimun conditions have not been successful° Recently tI

on a Oalloon f]igJ_tat BazT-ow9 Alaska in May 1985 conducted by.D, J. i{o_,_n of the

• University of Minnesota I the ionization Turn-up phenomena was observed and the

pmimary proton and heliun spectrmwnin the low rigidity range was simultaneously

measured. The ionization measurement is shown in Figure 8. A simultaneous flight

made at Minneapolis shows the latitude effect of total ionization very cleamly° •
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For comparison, an early flight made at the period of solar maximum at Minneapolis

is also included in Figure 8. For a simple method of investigating This "turn-up"

phenomena, we take differences between the hiE_h latitude and Minneapolis ionization

curves obtained _m the simultaneous flights. This difference must be due to

prdmary particles havin_ a rigidi_ equal to or less _nan I.3 BV which is the

Minneapolis cutoff, In Figure 9 this experimental latitude excess is shown by the

dotted line. Using the known response of the ion chambers to the various charge

companents of the primary spectrum and the direct particle measuren_nts by Hofmann

on the Barrow flight, together with estimates in the hiEj_errigidity range by

Webber, 1965, we have also calculated the expected latitude difference. The

differences for pistons, helium nuclei and S-nuclei and the s_mlnationfor tot.al

pr_ies ar_ shown in Figure 9. The conclusion is that the pro>tonspect_._ as

obsemved can never produce a %n/zn-upin the ionization dep'_.hcuIwe. This is

because of the lack of low energy protons in the spectz_ of the pz4_maz_es

observed by Hofmann at solar minimum. This confirms the earlier calcu3ations

about the turn-up phenome_>n mentia_ed _ve. Figure 9 also shows a calculated

contribution of helium nuclei based on the observed spectrum of HofTnann on the

Barrow flight. The helium nuclei, likewise, cannot provide The excess icnizaticn

needed for the "%_/rn-up"phenomenon. The contribution of heavies is included by

assuninE the ratio of heavies to helium to be the sa_e over The complete range of

rigidities. In this case, the contribution of heavies below 200 YeV per nucleon

is sufficient %0 produce the rapid increase of ionization as shown in Figure 9.

Although _his calculation is rather crude, we feel that the ionization depth

"turn-up" phenomena observed at solar minimum can be satisfactomily accounted for

by the primary cosmic ray spectrum m_d that There is no need to invoke any strange
t

or unusual %_/peof radiati_.
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• FIJRE CAFCNS

• Fi_me 1 Differential response ctmves for ion chambems in space and on

balloons. The former are computed using the known primary spectrum

and The latter _ based on Neher's latitude surveys.

FiEure 2 _actional increase in the ion c2_ rates and the inzensi_ of

He nuclei in vamious rigidity intervals as a function of the

cozT_sponding increase in The Mr. Washington neutron monitor

during The period 1960-1964. Rates in September 1964 are _aken

as refemence levels.

Figure 3 Variation of the balloon ion chan_er rates and the sunspot numbers

durinE the last solar cycle (1954-1965). Ion chambez-measurements
4

prior to 1955 are due to Neher.

, FiEure 4 Relationship of the hiEh latitude ion chamber rates (i0 rb altitude)

and the Deep River neutron monitor during the period 1960-1965. The

neutron monitor rate corresponds to the time when the balloon attains

the.i0 mb level.

Figure 5 Monthly mean ion chamber rates in free space from so]am maximum (1958)

t¢ solam minimum (1965) plotted against the corTesponding Deep River

neutron monitor rates= The inserts at the riEht show the correlation

plots of The daily mean rates durinE the history of each satellite.

Fi_u-e 6 Daily mean mates of the 0G0-A ion chamber and The Deep River neutron

monitor durinE the period September 1934 - June 1965. The peak in the

• cosmic ray intensity apparently occurred in eamly May 1965.

Figure 7 RiEidity dependence of The lonE-term modulation of the primary

cosmic rays, duping the period 1960-19640 The intensity _n September

1964 is taken as reference level.
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Figure 8 Variationof the balloon ion chamberrates with atmosphericdepth.

No_e the "turn-up" in the high latitude ion chamber rat_ at sola_

minimun (Hay 1965).

Figure 9 Observed and computed differsncein Minneapolisand high la¢iCude ion

chambers at various atmosphericdepths. Computationsare based on

The known primary spectrumat the top of The atmosphere.
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_,_,,, Measurement the Isotopic Composition of Heliun Nuclei in the Pr_-_y
ii:'_

Cosmic Radiation in the EnerEy Interval 90 - 150 Mev/nucleon_
..,1%,'

....

D. J. Hofmann and J, R. W_ckleri

A dE/dX - E scintillationcounter devicewas flown at high al%itude

':_...:,o_.r Barrow_ Alaska for a period of about 30 hours on 1.2Hay 1965_ a time

..... of absolute solar minimun0 The de%_._torwas capable of resolving protonsj

_:_:;_deuterons,He3 and He_ nuclei. In this paper, only _he helium nuclei resulZs

_:?i will be discussed. EnerRy and rigidity spec%Ta are extracted for He3 and Heg

_;_£! Taken separately. The ratio He3/He3+He _ is found to be constant over the enezEy

_,_ interval 80-150 Mev/nucleon_%h a value of 0.19 + 0.05 and in %erms of rigidity,%he ratiois found to be 0.39 + 0.09 at °8 By. The relation of %hese ratios %o

This work was supportedby a Eren_ from %he A_mcephericSciencesSection of %he
National Science Pounda_icn.
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On Hay 12, 1965, a dE/dX - E scintillation counter device was launched

on a balloon from Barrow, Alaska (6905° N geomagnetic lato) as a part of the

IQSY polar circling balloon (POCIBO) project° Total flight time was about

31 hours with 26 hours of good data between 3°5 .and 405 E/cm2 atmosphemic

depth. On this da_e _he Deep River neutron monit,_ and the OGO-A ionization

chamber in free space# indicated the highest countin_ rate duping the current

solar cycles Thus the fliEht was made at absolute solar n%in-lmumin terms of

paz_icle in_luXo DuminE the flight, the detector .eaeured the spectrum of

protons from 10 - 128 Mev at the detectom, and h_liun nuclei from 25 - 100

Hey/nucleon at the detector° The inherent mass resolution of the detector and

the increased amount of data Ea_hered (220 helium nuclei), compared with previous

balloon m_ssurements, permits the _me_y specCruns of the two resolved isotopes

He 3 and He4 to be evaluated separately and thus to examine for the first ¢ine,

the dependence of the ratio He3/He3+He 4 onenergy and riEidiCyo

Figure 1 is a two-dimensional pulse height distribution from the dE/dX - E

scintillation counters showinE all events in the low gain helium mode during 26

hours of the flighto The smooth curves are the Theoretical positions of the

o . _ OHe3 and Ha4 lines° Background due to nuclear _n¢erac 'zone in the crystals is

only a serious probleJnbelow 100 Hey total kinetic energy and this data has been

excluded from the analysis° Data in the region >25 Mev/nucleon from the 26 hours

is shown as a mass histogram in figure 2o Also shown are Gaussian distributions

with 10% half-widths _ the estimated resolution of the dE/dX scintillator for

particles of this energy° Figures 3 and _ show the differential enerKy/nucleon

and riEidiCy epectruns of the He 3 and He_ components taken separately and grouped

together and _reated as Hero The data has been extrapolated 1:o 0 8m/un 2 usirg

appropriate range energy data for the two species and the only flux correction

amounted to an 8% increase due ¢0 a_pheric absorption end productionby heavier

nuclei, using the data of Preier and Waddington (1965)° Thus the errors indicated
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in the fi&_es are pu_ly statistical. Also Eiven in fiEures 3 and _ a_ the

ratios He3/He3+HeW in _rms of enez_ylnucleono Over the interval /Turn80 - 150

Fev/nu_.leonlthe ratio appeaz_ to be _mst_nt with enerEy/nucleonD having a

value of olg with a ststisticaldeviationof + °05 at any one enerEy/nualeon

and + .035 if all particles _ _ouped topThero The PiEidi_y spe_ overlap

around o8 By giving a ratio of 039 + 009 and the shape of the spectrumssugEest

that the Patio incases with decreasingrigidityand may be as high as o5 at

°_ - 05 Bvo

_e He3/He3 Xratio _ured at the _ is dependent an the cosmic

ray _urce spectrum, intez_tellarfz_gnanTationof He_ and heavier nuclei)

prope4_tionaleffe_s such as energy loss by ionizati_ in inte_stellarh_an

, and a_oelez_tionor decelerationin i.r_ez"stell_z, masnetic fields, and local

:I modula1_Lonby solar influences° The scarc/ty of He3 in most stella_ a_mospheres

implies That The ma_o_ source of He3 is spallatlanof He_ and heavier nuclei in

passing _ouEh interstellarhydrogeno It is of interest _o note That mass

spectrome_ masurm_nts of helium nuclei in a dozen iron meteo_ities x_vealad

a mean He3/He3+He_ z_io of °20 + o03 (Signer and Niar, 1962)o Sinoe these

data were obtained fram _he inter_ioz's of large n_eoz_tes, they az_ _esumably

insensitiveto the primsry cosmic ray abundances as the outer layers where such

sop bypassage the a mosphemoThis central

ooncen1_aticn of He3 is thought to be due mainly to high enerEy cosmic ray nucleons

causing evepora_ion of into nuclei° It is an observational fact that the relative

abun_oe r_l_r_ed in ou_ a_suremnt is the sum as that observed in the me_eoz_

i_es. A high velocity ,_ron nuclausin theprimarycosmicradiation an

intenstellarhydro_sn atam =msti_es _he same process mntioned above for

me'_o_l_esbu_ viewed from a diffez_t reference fz_meo This process alone would

produce the obRz,ved z_tio of He3/He3+He_o ,_ver, one must consider in detail
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the ,_iffusicnthrough inte_stellam spae._ of all the nueleam species in the pr_

cosmic radiation° One is led to the requirement of He4 in the source and this He4

" becomes a major contributor to the He 3 abundance° From several such diffusion

calculations of the path length in interstellar hydrogen as a function of the

ratio He3/He_He 4, (Appa Rao, 1961; Foster and Mulvey, 1963_ Dahanayake et ai,1964)

and using cur n_asured r_tio at solar minimun 9 we estimate the path length to be

6.5 + i05 Em/_n2 in the energy range 80 - 150 Mev/nueleon_ The interpretation

of this value must be qualified by the possible effects of solar modulation° The

only available measurements at other times in the solar cycle are those of

Dahanayake et al (1964) who, ,/tilizingemulsions, found a ratio of 018 + °05 in the

enerKy interval 160 _ 370 Mev/nucleon at high latitude in 1962, and Hildebrand et

al (1963) repor_ a Patio of only 006 +_.03 in the enerEy interval 255 - 360 Mev/
4

nucleon in 1961o Since considerable discrepancies appear to exist between these

• measurements and because the enerEy range is higher , little can be said about the

enerEy dependance or solar n_dulation dependenoe of the _atio by a ccmpamison of

_hese values with those reported here° One might expect the Patio at 80 - 150

Mev/nucleon in 1965 to be significantly higher than the 1_tio at 160 - 370

Mev/nucleon in 1962 because (I) The path length in interstellam hydrogen may be

er_rEy dependent, causinE the ratio at lower enerEy to be kighemo (2) Most theomies

of solar modulation predict a maxin,%m in the ratio at solar minimum° From our data

alone we note that the observed enemy/nucleon spe_'tTumof He3 is similar to tlmt

of He4, and that the meas_t was made as close as possible to solar minimum

in ter_s of particle influx° Neglecting spectral changes due to enemgy loss or

" gain processes in the inte_stellar medium_ one would expect the energy/nucleon

spectr_unof the two species to _ sind.larin the near interstellar space free

from solaD modulation° Since the spectztm_ also appear similam near the ear_h_

one cuncludes that at sola_ minir_ t the modulation has little effect on the

observed He3/He3+He4 ratio and it is thus probably cloDe to the interstellar

value in this e_:rEy _.,terval.

00000002-T$C01



- 68 -

ACKNOW__;TS

The authors wish to express _heir gratitude to Ralph Puchs, John

Nitsmdy, _likeWeed, Dazwin Throne, Glenn Gendin, Roy Lahti and Jim Ade_ for

Thei_ able assistance during this phase of the project. The POCIBO program owes

much to Dr. Fi_xBr_tton and The Geography Branch of the Office of Naval Research

for azTanging the very effective suppo_ pzovided by the.Arctic Pes_areh Labora_omy

in Barrow, Alaska, and to Dr. P_ber_ F1eischer, Dir_._or of IQSY programs fop the

National Science Foundation. Alsot we ar_ grateful '_oP_oofessorGeorge S_.nson

of the Department of Electrical Engineeming, Unive_,si_yof ll1_ois, for constr,action

of the 70 K.C. receivers, site aur_eys and advice on D. F. problems.

00000002-TSC02



- 69 -

I_GURE CAPTIONS

Figure 1 Pulse height distribution of the energy lost in the dEldX
m

crystal (AE) plotted versus the energy lost in _e E crystal

(E - rE) in the low gain helium mode. Smooth curves are the

_heoreZical He3 and He4 lines. Scattering of points below

i00 Per is due to nuclear interaction background.

Figur_ 2 Mass histogram taken perpendicular to the heliun lines between

1.5 and 5.5 mass units amd E > 25 Mev/nuclecn. Gaussian dis-

tributions superimposed were calculated for 10% half-widths

as estimated for the resolution of the dE/dX scintillator.

Figure 3 IKffemential energy/nucleon spec_ extrapolated to the top

. of the atmosphere for He8, He4 and The _ taken together

and treated as He40
I

Figure 4 Differential rigidity spectruns extrapolated to the top of the

atmosphere for He3, He4, and The two taken together and %-reared

: as He4.
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Measurements of the Primary Proton and Helium Spectra and _heir _bdulatic_s

Usin_ a Balloon Borne Cerenkov-Scintillaticn Counter

J. Fo Ozmes and W. R. Webber

....' ABSTRACT

During the years 1983-1965,the spectra of protonsand heliun nuclei have

been studied on eleven flights at seven geomaEne_ic latitudes usinE a modified

vamslcn of _he Cemenkov-scintilla_ion counter. The fliEh_s a%T_ed depths of

•]_. 2-5 g/cm2 which coupled with the detec_om's large Eeome%Ty factor (-50 st _)

"_; enabled details of The heliun intensity,t and The differentcon%Tibutions,pr_mry

° and se_ndazy_ to The singly charged distz_buticn to be evaluated as a function

,_: of a1_nosphericdepth. These Pesults demonstrate That it is necessazy to know in

detail The oon_ibu_ion of all non-primary oo_ts, par_iculamly at the lower

_: energies, before a spectrumof primary protons can be determined. The spectra of

primary protons and heliu_ nuclei measured on these flights are presented. 'lhese

spectra cover the range from o0.6-15 Bv rigidity. Our results indicate _hat The

lowest energy protons have increased by more than 50%-between 1953 and 1955_ The

proton spectrum is almost flat down to 0.5 Bv in 1965, but The helium spectrum is

falling shaz_ly at the correspondingrigidities. A study of The modulationof

These two ccmponen_sduring this period reveals that (i) the modulationdepends

a_roxim_ely on 1/8 for 0._5 _ 8 _ 0.85 for both c_ponents, and (2) a_ The

same velooitYm the modulation for protons is -_2 x that for helium nuclei.

_Suppoz_edunder NASA BesearchGrent NsG 281-62.

! • i • . "-- . . , . ..... ")
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DurinE the past two years eleven balloon flights have been made with a
e

Cerenkov-scintillation telescope by the University of Minnesota ETou@. The

• detector measures the energy spectrum of the individ_,alnuclei from Z = ].-26

ov-_ an enemKy range from 40-1000 Mev/Nuc. Relevant data pe_ to these

flights is shc_n in Table Io

TABLE I

Dat_ Pcz,tainingto Balloon FliEhts
of ::_ov-Scintillaticn counter

Churchill 0o2 8-1-63 4o0 2297 S

Churchill 0°2 %1/-65 i.9 2425 S

Churchill 0.2 6-25-65 3.2 2445 MS

• ChtnT2till 0.2 7-2-65 4.3 2440 IAS

Ely,Minno 0.7 6-23-64 4.1 2418 S

Devils lake ,N.D. i.0 11-11-63 6.8 2325 S

Minneapolis, PLinn° 1.2 7-4-63 6 °5 2320 S

Fayetteville,Ark. 3°2 3-2_-64 6°5 2378 S

Ke_rille,Texas 5.6 3-29-65 5.5 2450 FS

Tucumen,Argentina 12.1 8-1- 6_ 5.5 2407 S

Tuctman,Argentina 12°i 8-9- 64 5,0 2410 RS

S= Standard detector

MS= _bdified 3 element detector to additionally measure the low enerzy electron
• spectrum°

LAS- Large area version of standard detector with Eeometry factorclO00 st cm2.
RS- Standard detector pointirg at 60° to the vertical and rotat_ E in azimuth once

• every 15minutes,

The four flights at Churchill were made by _ltside contractors using very Lu_e

plastic balloons, the remaining seve_ by the Minnesota Er_*p itself using 300 K or

600 K cubic ft. balloons to carry the total payload of 50 pounds to altitudes ranginE
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I

from _-6 Elun2. Our instrument is different than the usual Ce_ov-scintillation

counter and although it ,hasbeen described previously (Ormes and Webbert 1965)0

we would like to briefly review some of its salient features here° First t _he

so-called Cerenkov detector is actually a combination Lucite Cerenkov counter and

plastic scintillation counter with the integrated light from both processes heine

viewed by a single 7" PM tube. The degree of separation of the different chafes

components and the ability to measure the low enerEy particles of different charges

is de,ermined essentially by the ratio of scintillator (S) liEht to Cer_v (C)

liEht -- _he so-called S/C ratio. We have used a ratio of 0.6 in all standard

flights° The response of the %elescope to particles of different shares, mass

and enerEy is shown in PiEure i. Discrimination asainst multiple e_m.ntsis

car_ed out by studying The PHD Themselves rethe.rthan with an active anti-

coincidence systemo We believe that This approach is superior for a telescope

as large as curs where one can apply statistical methods to the analysis of the

data. Purthennore, The material in and az_und the telescope is kept to a minimum.

Perhaps The most important fea%_re of The detector is, however, its lares

Eeome%Ty factom of .50 st cm2o This is a factor of 10_100 x that of comparable

de_¢ectorsflown in balloons° This lazes Eece_inm]factor is achieved wiThout loss

in resolution by a careful selection of components.

The fliEht data is d_ ided into 5-10 minute intervals durinE the ascent and

appropriate ionEe_ intervals while the balloon is at altitude. This means that The

absorption of helium nuclei can be obtained as a func%icn of al_itude. The develop-

ment of low enerE_ protons can &Iso _ studied as a function of altitude -- a most

important input for The separation of low enerEy primary and secondary protons at

high latitude and high altitude. AITho1_h This data is available it will no_ be

presented here.
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• During the eourse o.= a tl_ical four hour, flight at high latitude, a total

of -20,000 helium nuclei are obs_ed. Each diffez_.ntial.%ntervalfor heliLan

nuclei will thus contain a_ut 10C0 counts. L_l"_e other detectors statistical

uncertainties a._enot the most impoz_ant souz_e of error in the proton and helium

differential spec%-z_o For this z_%son, gr_a'¢care _ms been taken in _h_.standazd-

ization of the ins_umantaticn - bo+h with re.E_d to its physical pmop___tiesand

the analysis of the da_ao

The t_ largest sources of _ncez_ainty it,the ana3.ysis¢ _ the data ar_ (1)

the enez_y (or chaise) eaii_ation and (2) the identification of "true" counts as

indicated by tba_r be.in_at the location in the PHD predicted by Fi_e (i)

(eogo the mm_oval of "baekE_ound" counts)o (1) will be discussed in an accongany'_g

paper on the heavier nuclei, wheme the energy or charge is a much more sensitivo

function of the known eali_ation of the instrument° The importance of (2) depends

, on the enemKy and chax_e bein_ considered0 Fo_ enemies from 600-1200 Mev/Nu_ fo_

both protons and hel_, _ne pul._s lie within the region of sca%-temof the

sy_me%-z--caldistributions of pulse_ from particles with enez_y > 1200 M_v/_uc0

Statistical n_thods are used to obtain the spec_z_m in this z%%nEeand the aecux_cy

varies aocoz%din_to how farointo the syr_ez_ical minim_ ionizing distz_ibutionthe

p_l.eeslieo _'nee_rors on the diffez_ntiai pZo%on and helium intensities mange

_m -5% at _%e low energy end of this range to -_0% at the high enez_ end°

The background in the proton distribution below 600 Mev ._ms be?_P..en20 and 40% •

of the %r_e counts° Various subtz_ction processes and compamison with lowem

latitude date er_ble the tz_/ecounts to be obtained and these counts separated into
W

pr_y and secondomy components. Ez%_zs _,,these differential points r_n_e fz_m

. 3-5%. At the location whez_ the pz_ton and heliLandis%n._ibuti_-,sclass, tt_a

heli=_ nuclei dominate and the pre_on spectz_m cannot be determined in the range

60 + 3.5M_v, 'Ynebaekw_ound in the helium d_t_ibution _._low400 May runs bm_en

i0 ar_ 25% of the tzue counts, Again vamluus __btraction p_ocesses and compa._son

I I --L-. I - i ,, , =, ......
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w/th lower latitude data enable the true counts to be obtained to an accuracy - the

statistical accuracy. We estimate that the systematic errors on the inteEral and

differential proton and heliu_ intensities are- + 3-6% fop the whole series of

fliEhts_ however, thu relative errors when comparing individual flights are

+ 2% when not limited by statistical errors. As a result the features of the

modulation are defined somewhat more aocurately than the spectrum itself and

indeed we are able to observe statistically significant modulation effects at

low enezEies for a 1% change in neutron monitor intensi%_o

The data is received in terms of a two dimensional 256 x 256 pulse height

matrix with another bit signifying whether the individual pulse height should be

multiplied by 8 o._ not. This gives a total _an_c range of 2048 in each

dimension. The _ts of computer storaEe permit the readout of only a 64 x 64

ii pulse height ma%Tix, however, so it is necessary to exmmine the entire distribution

by selecting various _4 x 64 matrices. In fiEure 2 we _ow a print-out of a matrix

containinE protons and relativistic heliun for a typical flight.

The data we have obtained has _en divided _nto two epochs -- one where the

average Mt. WashinEton bihourly rate is 2320, the other where it is 2420, since

a mjori_y of flights were made at approximately _%ese levels. Data fron flights

made at sliE/htlydifferent levels (n_inly low latitude flights) have been corrected

to these levels using The observed features of the modulation0 The integral spectrum

for protons is shown in Figure 3. Tne primary proton intensities at 3o2, 5°6,

i0.2, 12oI and 1507 By ere determined from extrapolation of the _T_Lh curve for

relativistic singly charged particles (effectively protons , 1200 Mev) to the

top of the atmosphere, correcting for re-entrant albedo (electrons) and usin_

the calculated gecmaEnetic cut-offs appropriate to the flight locations. _ese

absorption curves are shown in Figure 4. Determination of this par_ of the

proton spectrum is most difficult since none o_.the detectors _, ,Asediscriminate

against either or both of the relativistic secondary mesons and protons produced
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• in The a_nosphez_above the detector as well as the re-enteringelecq_ons.

Our results on The intensityof primary protons and on the _ of The

relativisticparticlesare consistentwith those measured earlier at similar

latitudesby McDonald (1958) and Balasubrahmanyanet al (1962)o A separate study

s_ws that The primary proton intensitiesat high energiespreviouslydeduced

from emulsion studiesare probably underestimatedrelative to those obtad_ed

using Cerem_ov-scintillators.It shouldbe noted that the points at i0oi and

15.7 By are obtained from extrapolationof The west and east pointing portions

of The rotating flight. The point at 1.9 By representsThe ex%Tapolationof the

relativisticparticle distributionsin The high latitude flights° The points

below lo9 Bv are obtained directly f._gmThe differentialspectrummeasured by

• The detectoram_ corre.ctedfor sscondaryprotons, This .differentialspectrtm_

is shown in Figure 5 along with the differentialintensitiesobtained by corn-
|

paring The 1.9, 302 and 5o6 By integral points.

The integral spectrum for heliun nuclei is shown in Figure 6. The intensities

at 302, 506 and 12ol Bv are determinedfrom The extrapolationof the exponential

growth curve of These nuclei in The a_mosphere (MPP ° 55 g/cm2)o Tb_ other

poin s are obtained directly from the differentialspectrameasured by the

detector° These diffe.-_ntia!intensitiesare shcwn in Figure 7 along with the

differe_,tialintensityobtained by comparing The 3°2 and 5°6 B% integral points°

In The case of the helium nuclei, the differentialand integral spectra obtained

using The detector itself and the infexred geomagneticcut-offs overlap, and are

."mgood agreemento

The ccmp_:_tivespo_n,a end The details of The modulationof protonsand

" heliu_ nuclei as deduced frcelthis study will be discussed in an accompanying

paper° We summarizethese results here briefly as follows|

Modulati_: (I) Depends approximatelyon i/_ for 0,_5 ,__ < 0.85 for both

oomponentsand (2) at i'hes_e velocity,*_e modulationfor protons is., 2 x that
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fop helium nuclei.

Comparative spectra: (i) Ratio of proton I;ohelium nuclei diff_tial

h _ensities (P/He) remains constant at a value - 8 as a functionof riEidi%_

beiween 2 and 16 By. Below 2 By, it increasesrapidly. (2) P/He as a function

of anerEylnucleonvaries continuouslyfm0m a value ° 5 at 200 MevlNuc to - 20

above 6 Mev/Nuc. In addition,this ratio is a functionof the amount of

mo_la_ion.
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FiEtme I The responseof the _ov-scintillator telescope to paz_iclesof

differentchaz_e_ mass and enerEy.

Figure 2 64 x 6q mat1_ixfor Paye_tevilleflight. S output on verticalaxis -

S+C on horizontal. Note heliun in lower right hand aomem and slow

pmo_on dis%-cibution(atmosphericseccndamies)running diagonallyto

lowem cen%er of distribution. Nunbems Eive n where each bin has be-

%ween 2n and 2n + 1 counts.

PiEure 3 InteErel spectr_anof pr_nary protons at %wo levels of modulation.

FiEuz_ q G_ow_ cur_es of relativisticpaz_iclesmeasured on q fliEhts

at different latitudes.

. FiEure 5 Differentialspectzum of pzimary pz_tons at %_o levels of modulation.

FiEuz.e6 In_@_sl spectra of p_ heli_n nuclei at %w0 levels of modulation.

Figume 7 Differentialspec_un of pmimaz_ Heliun nuclei at two levels of

modulation.
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Some Implications of the Pela_ive Spectra of the

Different Charge Components in the Primary Radiation_

W. R. Webber

i

I.
i

_,. ABS_,ACT

! In acccmpanying papers we have presented the differential spectra of

,!! the individual _har_e components -- protons through heavy nuclei -- n_.asured

2> at different levels of solar modulation from 1963-1965. Utilizing _he fact

_._ that the solar modulation affects particles of different charEe to mass ratio

_i_!_iin such a way that the ratio of intensities in differential riEidi_ intervals

i_ are not chanK_d, we a2._able to compare the relative spectra prior to solar

_ modulation. This comparison suggests the following: (i) '/herelative spectra

)i
:,:: of protons and helium nuclei are most reasonably interpreted in terms of

_:t-o

:i;_12identical rigidi%_ spectra at the "source" rather than enerEy/nucleon spectra.

The large increase in P/He (P) ratio at low rigidities may in large part be

; : due to production of secondary protons as well as icnizaticn loss in the

i;!:"interstellar medium. (2) The variation of the P/_e, L/H and He/N ratios with
'J &

"_:.- energy can be interpreted in terms of ionization loss of the primary radiation
o

?: moving through an amount of material which monotonically decreases with increasing

'_:_ enerEy. (3) The spectra of heavy nuclei above 3 By systematically be:,_mesteeper
%

_,, _th increasingcharge.

,;,:!. *Wcmk supported under NASA Research Grant No. NsG 281-62.
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In accompanying papers, we have presented the rigidity spectra of the

charEe components in the primary radiation -- measured f1_m - 1-16 By. These

spectra have been measured at different levels of solar modulation. Analysis

of this modulation shows that it affects particles of different chafes

(chafEs to ross ratio) in such a way that the ratios of intensities in

differential rigidity intervals are.not chanzed whereas the relative different_l

il energy per nucleon ratios are. We shall use this fact th_oughout The remain/nE

ii discussion whenever the effects of the solar modulation are %0 be considered

and shall proceed to a study of the asi-rophysicalsignificance of the

relative unm_dulated spectra of the different ehar_=ecompQ:ents.

Considering the protons and helium nuclei first, FiEuz_ 1 shows the ratio

of The differential riEidity spectra of these Two ccm_xonentsbetween 0.8 and

16 Bvo FiEure 2 shows the equivalent ratiOS fop the differential energy/

nucleon spectra between The cc_responding limits. It is apparent that the ratio

P/He (P) is sensibly constant at a value - 8 above about 1o5 By, increasinE

rapidly at lower rigidities to a value - 50 at 0.75 By9 whereas the ratio P/He(E)

seems to vary continuously ove1_our manes of measurement -- from a value - 5 at

the lowest enerEies to - 20 at the highest enerEieso At even higher enezEies

the very limited available data suEEests that P/He (E) is more or less constant

with a value - 20 (Waddin_on 1960).

The results on the solar modulation suggest that P/He (P) remains constant

during This process so that we may reEard the measurements in FiEure 1 as

appropriate to the unmodulated beam as well. As can be seen, however, P/He(E)

clmnges with modulation. In order to estimate what these unmodulated ratios

might be,we need to know the degree of modulation at sunspot minimum. L_cking

_%isi we can still detezmine (from the known energy dependence of the modulation

and the measured ratios) that The solar modulation process can never produce
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P/He (E) = constant. }hr_hermore, unless we are seeing only a small fraction

(.50% of the true galactic particles at energies - 1-2 Bev/Nuc, the variation

of P/He (E) _hat is seem must be close to that present in the unn_dulated

beam and certainly then P/He (E) is not a cons_a/%t0

There are a number of different explanations for the behavior just described.

First, if the spectra of these components are viewed in terms of energy/nucleon

spectra, as is the comTmn assumption today, then it see_nsthat the P/He (E)

•Patio at the "source" must be almost identical to the measured Patio above

-i Bev/Nuc since the effects of interstellar propagation on r/_isPatio are

believed to be _noP in this energy range, ro_ example, if a Fel-mi%_]pe

acceleration in interstellar space were dome,ant and invoked to produce a

changing ratio with energy, the differences in speztra arising from such a

process would be expected to be much less pronounced than a1_ actually

observed. AS a r_sult, we a_.eleft with the assumption that the "source"

spectra are different on an energy/nut, on basis.

If the spectra are viewed in te_ns of _iEi¢_ity,however, the following

picture e_Ees. The observed constancy of P/He (P) above 1.5 By is then a

reflection of identical rigidity spectra leaving the source region and s,_sequently

relatively unaffected by interstellar propagation. The rapid inc:_as_ in P/He(P)

below 1.5 Bv then reflects a number of interstellar processes t the most coarsen

assumption being different rates of energy loss by ionization (at the same rigidity)

in the interstellar median. The rapidity of the increase in P/_{e (I) cannot

be explained by ionization loss where the path length is constant with energy s

howevez,,and we must assure that the interstellar path length increases %rlth

decreasing energy (eg. Appa Rao, 1984), We illust-_atethis in Figure 1 with a

path length varying at E"0,5 normalized to 2.5 g/_2 at 3 Bvo Although this

gives a reasonable fit to the data, we should point out chat previous calculations

have unitted the effects of secondary protons and helium nuclei arising from
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nuclear interactions in th4.ssame material, Calculations by Feiz and Milford

(1965) show That this is a lamge effect for pmotons, with secondary protons

actually d_dnating the spectPun below 100 Mev° AlthoH_h corresponding

calculations have not bean carried out for He nuclei, our expemiance in the

a_-nosphcr_ sho_ the secondary low energy He nuclei are relatively much less

important0 Prelimirmry calculations using a diffusion model and taking into

account both secondary particles and ionization loss indicate that the observed

increase in P/He (P) at low energies can be explained by passage Through about

3 g/cm2 of material -- constant wiG% enemEy°

Before discussing this point _em, let us turn to the data on heaviem

nuclei. We have already seen Figure 3 -- see also accompanying papers -- that

the spectra of M and LH nuclei seem to be steepeP than The He nuclei above

3 By° The differences in the spectra of L nuclei are even more pronounced and

The diffemential L/M ratio measured at differ energies _Id migidities is

shown in PlEuraeq. The decrease in This ratio is apparent both wiTh increasing

rigidity and increasing anemgy/nucleon.

As in Figure 3, the dotted curves show how the ratio would vary if m, the

exponent on the differential spectra differs, by 001, 0°2, etc. (Note from Table I

of the accompanying paper that no significant dmnge in the Be/B ratio is apparent

with energy° The limitations this presents on The deca7 of Ba10 and the lifetime

of the cosmic ra_ are discussed by Durgaprasad (1963)._

The L nuclei are believed to be secondary from nuclear interactions in

interstellar space thus energy/nucleon seems to be the appropriate quantity

to study the L/M ratio since these _wo groups of nuclei have slightly different

chax_e to mass ratios. This will mean that solar modulation effects will change

r _his Patio somBwhatj but ws shall neglect This effect which must certainly be

_mall compared to the obserwed change, Accurate data on the L/M ratio at high

energies is lacking and the previous results are conflicting. (Waddington, 1960_
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DumEpmasad , 1963_ Mathiesen and Stenman, 1965). Our data, while based on the

observation of only 36 L nuclei,is statistically t2,emost accurate r_ported

• to date. The difference in the exponents of the L and M spectra of 0.5 + 0.15

is certainly significant. An enerEy dependent L/M Patio has been speculated

before and is usually interpreted in terms of passage of the M and H nuclei

through an enez_y dependant amount of material. This might occur in the

source regions or in the interstellar medi_ itself. If ou_ _esults

are interpreted in fezes of su_/%an effect, then the amount of material,

X- E"0"5. It is also possible that enez_y dependent fragmautation proba-

bilities for the L nuclei can produce this effect. Our atmospheric attenuation

results for the L and M components -- while showinE some deviations from 1st

c_dem fragmentation theory -- are not sensitive enough to detect such an

enerEy dependence.

The final aspect of the data we wish to discuss concerns the relative

specCma of _he _ iH and He m_lei. Pefercing again to Figure 3, we see

that both He/M (P) and HE/I/I (P) begin increasing below about 2.5 Bv rigidity.
[

I Our results are in good agreement with those found at still lower rigidities

i; by Fichtel, et al (1964) and Liraand Fukui (1965) and interpreted agaLn in

ter_s of ionization loss in interstellar space by Fichtel, et al. In Fichtel's

study, 3 E/cm2 of material -- constant with enerEy -- was sufficient to produce

the chanEes in He/M. The above estimate was made assuming the spectma of these

nuclei were ihntical at hiKhem enerEies. If, in fact, the M and i_ spectre

are steepeP as cup results seem to indicate, then the amount of matemial must

increase with decreasing enerEy approximately at E-0.5.This is illustrated in

Figure 3. If this occurs or indeed if the particles have passed through more

than i-2 g/cm2 of material the He/VH ratio should increase rapidly below 2-3 By.

It is clear from Figure 3 that this does not occur. The He/VH _tio might z_main

essentially constant h_ the 1.5 - 3 By x_nge only if the %_Ispectz_m were
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substantially steeper than the He spectrum at hig> energies. AEain, this does

not seem to occur although our results cannot rule out a systematic increase

in spectral index with increasing chargeo The slightly steeper M and i_ nuclei

spectra sugEest tb_t this my be occurring. It is interesting to recall That

such an increase (more pronounced than the ones measured here) was oriEinally

sugEested by Sir_er (1958) on the basis of measuren_nts up to 1956. More

recent sumnaries_ WaddinEton (1960) and Webber (1965)t have indicated that

the differences in the spectra of heavier nuclei are small if they exist at

all. Our measurements at high enerEies are statistically as accurate as any

reported to date (>200 nuclei havinE been observed) and have the added

advantaEe that all components are measured simultaneously at une latitude and

the same detector is used for meas_ts at different latitudes.

In sumnaryt our results on the relative spectra of The different chafes

components suEEest the following: (I) The relative sDectra of protons end helium

nuclei are most reasonably interpreted in terms of similar source riEidity

spectre rather than eaerEy nucleon spectra. The differences in these ri_di_

spectra at low energies is due to both the production of secondary protons and

ionization loss in the interstellar mediun. (2) The variation of the P/He, L/M

and He/N ratios at low and intermediate enerEies can be interpzeted in terms

of the passaEe of primary radiation after acceleration through an amount of

material which mcnutonically decreases with increasinE enerEy. (3) A systematic

sTeepeninz of the specs'reof heavier multiply chamEed nuclei with increasinE

charge appears to exist.

Some of these features are less well defined than others, however, and our

results show the clear need for measurements on each charge group in the rigidity

range 5-50 By with a numerical e_curacy up to i0 x that obtained in our experi-

ments. This is not only to define the characteristics of these spectra at high

energies but to enable the definitive measurements that can be obtained at very
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P

low ene@ies to be intezpretedmore easily. To cite one example, the v_ry

powerfulmeans that a measurementof %he comparativespectre of the different

chaz_esat low energies gives us for detezminingthe distr_butionof cosmic

ray sources cannot be fully utilizedwithout a knowledge of the com_ive

spectra at higher energies.
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I

FI@U_ CAPTIONS

FiEure 1 Differential proton and heli_n nuclei int_Lsi%ies compared as a
I

I

function of migidity for two levels of solam modulation.

Figure 2 Differential proton and helium nuclei h%tensities compared as a i
i

function of enerKy/nucleon for %wo 2evels of solar modulation.
J

FiEu_e 3 Ratios of helium to H, I_ and VH nuclei respectively° Differential

riEidity measurements in 1964 a_ shown except for the highest

r_idi%-j point which is an inteEral above 12.1 Bvo

Figure 4 Ratio of differential L to H intensities -- compared as a function of

riEidi%y (A/Z of L nuclei assuned to be.= 2.2) and ener_y/nucleono
"4
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: Measur_,_nts of tileEnerEy Spectrum

"_," of Nucic".wlth Z > 3 "in _:hePrimary Radiation
/'

':.... Using a Balloon B_r_e Ce_ankov-Scintillation Counte_.

'i

/..

..- W0 R0 Webbe__, Jo Fo Or_e_ and To von Rosenvinge_
t_

i:_i_. The spec_u of the ,_ocalled L_.M and H nuclei have been measured on elev_m

_:,:_, balloon fliEhts at seven gecmaEnetic latitudes dEvinE the pemiod 1963-1965°
k-¢<f2 .
&,_..&l,_ -

_"'_:,-, The ins_ument used is a modified version of the Cer_nkov-sdn_illation counter,

_.:-_L_.:.These spectra have been measured over the ranEe 105 %0 16 Bvo The fliEhts

!_ji_:ii_.• attained depths of 2-6 g/cm 2 which,ooupled with the detectors larEe gecmetz__eal

._;_::;':factor ( -50 st cm2) has enabled details of the absorption of the L, M and g
j'.!'

i'_:'_::"c_r_onents to be s_udied in the upper a_mosphe_e° The larEe geometrical factor

i,_,"[?:, has allowed identification of over i0,000 nuclei with Z > 3, with over 2000

"_'°_:_,,,, heine observed on a sinEle fliEht0 A total of _150 VH nuclei have been observed

_,,>,_;,:,and the spectre of these nuclei has been found to be similar to _hat of M and LH
[%_7 ' "

nuclei above .2 By. The spectra of the L nuclei is found %o be si_Lfi_antly

different from tha_ of _he M and H nuclei, with the exponent on a power law

enersy specrrun beinE 0o3 +_0°1 larger° The M and LH nuclei spec%Ta are also

differ_n_ than the He nuclei spec_ above 3 Bv; the exponent on a Dower law

spectrum beinE 0.I +_0,.03 lar_er, with the integral spectrum being given by an

averaEe exponent of -i06 + 0_03 over _e ranEe 3-16 By. The solar modulation "

of ,hese ntmlei is found to be Eimilez, to tha't of the He nuclei, _/_)_

I _ Work s,_po_ted m_er _%SA Research Grant NsG 281-620
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In this paper we wish to discuss the enerEy spect_-::_.%dmodula_i_unof the

heavier nuclei, essentially those with 3 < Z < 26 as neasuu_d by the Cei_z_v-

scintillator system discussed in a companion pape.% The study of these zmclei

presents a number of special problems with which we would like to concer_

ourselves befor_ the actual presentation of the data_

First of all, the identification of these nuclei _ the atmosphe_ is

relatively simple ana although the intensity is not grea._, it is possible to

get meaningful absorption curves of the different components (the L, M and LH

Eroups) as the balloon rises to altitude. These may then be used to compare

with f-__tation-diffusion theory and to extrapolate the intensities of the

different components to the top of the atmospheres
4

!_ Dur//%ga typical four hour dumation of a high latitude flight -2000 nuclei

with Z >_ 3 ape observed° This permits breakdown into the usual L, Mj LH and
L
i VH ch_Ee Eroups0 The spc_ of the M n_ .-i can be detezmined with anI"

accuracy formerly associated with the helium _uclei and the spectz_ of L and LH

nuclei are each based cn .300 counts°

The identification of the different nuclei passing through the detector is

controlled by Two factors. Fimst the background of unwanted counts is viz_tually

zero for paz_icles of all enez_y with Z >_5o Second, the charEe Pesol'_icn is

good enough so that the counts due to individual charges show up as distinct

groups over the z_mge 5 _.Z • 14 in a flight at latitudes <50° and a series ofemB

successive lines (see FiEure 1 of accompanyinZ paper) at ligh latitudes where

non-relativistic particles are enterin_ and the energy spectrum is heine mm_sured°

For values of Z >15 it is difficult to make individual chaz_e identification_

hcweve_ a EroupinE into "apparent" even chaP&es is noted with a distinct EroupinE

at a Z -26 beinE the dominant feature of this paz_ of the charEe distribution.

Because of the pmintout _ 6_ x 6_ arTays_ it is difficult to show a complete charEe

spectrum at the highest r_solution0 Howeve_ Figur_ 1 shows an array cover_nE Boman,
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Carbon and Nitrogen for the Fayettevilleflight where all of the particles ares

relativistic° The system linearityis calibratedby a lightpulser system before

each tlighto In addition,The proton and heliun peaks provide in-flightcalibration0

The abilit_ to identifyeach charge peak up through Z --14 then provides a continuous

meast_e of the l_near_t_of response of The system to particles of different charge

end energy loss0 As a resultt it is possible to measure the non-linearitiesof

energy loss in The plastic scintillatorand Cer_mkov-scintillatorup to a charge

of -2Go The results are shown in Figure 2° Our results show that the saturation

effect in The scintillatorbecomes logamiCbmicat high rates of energy loss0 This

is in some ways an advantage sinceit converts a normal Z2 charge dependenceinto

one -Z - givL1g effec'i_ivelya logarithmicsystem and allowing us to extend our

chargemeasu_-mentout to Z = 26° This charge calibrationhas been establishedfor

several flights.

The energy spectra of the heavy nuclei are Then determinedin a straight-

forwardway° An edditicna! check is possible on The energy calibrationfor non-

relativisticheavy nuclei by observing The locationof the minimun on the S + C
4

output curve (as well as the slope of the S vs S [C-0] output)o Detailed s_udy

of these features shows t/_atThe non®linearityis independentof chax_e and depends-

only on dE/dx in the range of energies that do not end in _he scinti_latOro

It is to be noted that at energies scemwhatbelow The Cerenkov threshold

(<250 Yev/Nuc), it becomes impossibleto resolve individualchargeso In the range

100-250Mev/Nuc, it is still possible to get the differentialintensityof particles

of a given charge group_ however° The completecharge breakdown for all flights

analyzed to date is showm in Table Io

The integral spectra of the various charge groups are shown in Figure 30

The points at 302, 5°6 and 12ol By are evaluated in the same way as the heliun

nuclei, that is by extre:_olatingthe growth curves of the individualoon_nts to

the top of the a_mmphere0 The remain_,gpoints are obtained from the differential
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TABLE I

Distributionof Particlesof Different

Chamge at BalloonAltitudes

____Ei£ Counts

Total _12 By

Be 214 II,225 36
B 6223 l?v/

C 1_390" 65

N 530_,3_142 15 124

0 i0132 44

r 0.

Na 110_

A1MESi 1211665_7764 iiI 37

15 _ Z _ 19 103 1
a_m mmm

Z > 20 204 8
ell

Z~ 40 2 0

spectrum measured in _ te_scope itself. These differentialspe_L_a are shown In

Fisure 4 alone with a point detePm/med from%he differences of 1:he 3.2 and 5.6 Bv

inteErel measurements. The effeCts of the solar modulation are clearly ewldent in

the spect_a of the M nuclei and leas conspicuouslyso for the L end L_ nuclei. As

near as can be determinedthe solar modulatianaffects these nuclei (exoept for

! possibly the L nuclei) in a roamer identicalto t,w helium nuclei.
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Although superficially the spectra of these heavy nuclei are similar,

important differences exist, both at the low and high miKidity par_s of The i

spectrum° These differem_es seem to be best illustmated by taking ratios of the i

differential intensities of heliun nuclei to the vamious heavy nuclei @youps_
i

ii Three of these ratios are shown in Figure 5 as a function of riEidi%_o !

i_ (EnerEy/nuc and rigidity are equivalent if we neglect He 3 in the helium component.)

Very li%-tlecan be said of the He/VH ratio - except that it shows no pronounced

changes from 2-12 Bvo Even this fact has same.important astrophysical implicaticns_

as will be discussed in an accompanying paper° The He/M and He/LH ratios both

behave in a similar manner 9 however0 Above about 205 Bv these ratios slowly

increase with increasinE rigidityo This increase appears to be continuous and is

equivalent to The pow_m law spectra of the M,and L_ nuclei havinE an exponent 0.i

+ 0°03 larEer than the helium nuclei_ It is important to note that This result is

not based on a single equatorial flight but appears in bot__hhflights -- in which over i

200 of These nuclei have been reco_edo This trend is also evident in the Kerrville

flight at 5.6 Bv where a further 400 of These nuclei were recorded. Unless a system-

atic distortion exists be%_een energies measured by the detector and Those deduced

from geoma@%etic considerations for These charEes9 we must regard this effect as

statistically siEnifieant o

Finally_ below 2 By a rapid increase in these ratios occurs -- most notable

for The M nuclei0 The siEnificance of these spectral diffea_nces and a discussion

of the spectra of L nuclei which shows even more pronounced differences will be

discussed in an accumpan_ing papemo
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4

FIGURE __S

Figure 1 64 x 64 array showing a part of the pulse height distribution

containing Boron t Carbon (the large Eroup rig_htcenter) and Nitrogen°

S output alone vertical axis, S + C output along horizontal, l_e

geomagnetic cut-off of -900 Mev/Nuc means that the distributions should

be sliEhtly skewed in the direction of smaller S + C outputs and this

is clearly eviden_ from the Pi£ureo

Figure 2 Pelation between enerEy loss (dE/dx) and light output (dL/dx) for

relativistic particles of various charge in plastic mcintillator

(NE 102) and S + C detector.

e

Figure 3 Integral spectra of the L, M, LH and VH charEe groups. The solid lines

indicating int=gral rigidity spectra with exponents = -1.5 are shown

for guide purposes only=

Figure 4 Differential speciTa of the L, M, LH and VH charge groups. The solid

lines incicating differential rigidity speciTa with exponents = -2.5 are

shown for guide purposes only=

Pigure 5 Ratios of heliun to M, LH and VH nuclei respectively= Differential

rigidi%_ ,_.asurementsare shown except for i:he highest rigidiZy point

which is an L'_tegral above 12.1 Bvo

b

I
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i Solaz,Modulation of Protons and Helium Nuclei
!,

J_,,,

I.!;_ D/Ping _he Pemiod 1963 - 1965_

" Wo Ro Webber

[i,,

;.... The low PiKJ;JitypoP_ionsof _he pPimary spec%Ta of protons and helit_nnuclei

' have been measured on six occasions duping 1963-1965 usin_ a Cerenkov-scintillation

oounte:_=arTied to altitudes of 2-6 g/cm2 by balloons° The range of _igidities

i ovem which detailed spectT_l measumements have been made is 0°W - 2 Bv forep_otcns
and 0°8 - 4 Bv forehelium nuclei. The measurements cove_ a period of decreasin_

solar modulation as evidenced by an,increase in Mto Was?/n_cn neutron mmni%or

:._:_. re_ f'rcm a value ,,,2300 in "_.e sum_m of 1963 to --2q.50 in 1965° The increase

I;!ililin neutron monitoP ma:e was accompanied by much lamgeP increases in the low enerpj

i,:!.:,: protons and helium nucle_ -- amounting to a factoP of almost T_o at the lowest

_..: riEiditieso The energy dependence of the modulation of both protons and heliun

nuclei is consistent with a l/B dependence fop 0°45 < 8 <_0,85, H_eveP, at _he

_._,same veloci%3/,the modulation fop protons is _ 2 x t,hatforehelium nuclei, The

_: modulation thus produces identical chanEes in the rigidity spec%-naof the T_o
%

components, _"]Lismodel is inconsistent with a s_nple diffusion model fop the

li-yeam variation such as su_ested by ParkeP (1963), HoweveP, a model in which

diffusion and enerEy loss occu_ simultaneously and are of apprDximately equal

....Lmpor_ance is explored and found to be capable of producing the obsecved modulations.

t

. _ Work supported under NASA Research Grant Noo NsG 281-62.
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" According to our data we propose the following recipe for the l.!-year

modulation of galactic cosmic rays near the sun. "Start with a basic solar wind.

Add a generous portion of turbulence and scatteming. Add an equal amount of Fermi

deceleration. Mix together thoroughly and allow to diffuse near _he sun for one

month at 2 x 1050 K"o

Our remllts on the modulation of protons and helium suggest t_mt factors

other tb_n simple diffusion and cDnvection in the model originally proposed by

Parker (1963) play an important role in the ll-year modulation of g_actic cosmic

rays near the s_. In order to come to this conclusion, it is necessary to
/ .,

detomnlne not only the energy dependence of the modulation for a single charEe

/. componen_ but the relative modulation of charge components with different A/Z 11_t._os--
such as protons and b_liun nuclei; light and mediun nuc.lei_etc. The results presented

in the previous two papers allow us to do this for _cheabove charEe groups during a

' period from 1963-19650 Dur_g this time the Mto Washington neutron intensity at the

times of the balloon flights increased from 2297 to 2445, or-6.5%, reaching a level

during the 1965 _ights within 2-3% of the sunspot minimum level in 1954o The data

on the changes in intensity of the protons and helium nuclei as a function of energy

relative to the changes in neutron monitor intensity measured during this interval

is summamized in Fi_e I.

Between 8 " 0.45 - 0.85 the modulation of both helium nuclei and protons is

seen to be r_asonably similar and to have a 1/8 dependence. This velocity dependence

is in essential agreement with that observed for these components individually by

experiments carried out on the IMP-I sa_ellite which was in operation over part of

the period covered by our study I (Gloeckler 1965)t (McDonald and Ludwig 1965) o

• However I and this is importantt at the same velocity the change in the proton intensity

is at least a factor of 2 greater than the helium nuclei. This impl"_.esthat if we

measure the ratio of differential energy/nucleon intensities of protons and helium

at tim_s of different modulationt the ratio should be different. (See Figure 2 of
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acccmpanying paper°) At a time of Ereater modulation, the ratio is seen to be clearly

smaller at lower energies° Conversely, if the ratios of differential rigi¢,ity

.intensitiesare compared as a function of modulation i little change is observed°

(See F_Eure 1 of accompanying paper°) This suEEests that although the ac%mal

remountof modulation depends on l/B, it is, nevertheless, effectively rigidity

We should point out that these results are in disagreement with the conclusions

of Gloec/_ler (1965) who upon comparing his own results on the modulation of low enerEy

hellionwith those of M_Donald and LudwiE (1965) on protons (Erouped into samewhat

differ_nt time intervals) concluded that the modulation of these two ccmponents were

the sam_ at a given velocity at low enarEieso This might indeed be true at the values

of 8 = 0°2 - 0_W5 oovered in these experiments and still not apply in the ranEe covere¢

by our measurements° To investigate the character of the modulation furtter, we have

cumpared our results with the n_ulation That could be infeaTed by makinE reEression

curves of differential intensities of protons and heliun nuclei with neutron monitor

data forethe ccmplete solar cycle -- using the data presented in the review article

by Webber (1965)° This data is shown in Figure 2o Since here the fractional modulatic

is plotted as a function of rigidity the fact that the proton and helium modulation

are similar is equivalent to our earlier statements° The ccmposite data gives a

significantly Ereater fractional modulation and a somewhat flatter riEidity dependence

of _his modulation than our balloon data° This is an averaEe over the entire solar

cycle, however, and the Ereat,er fracticnal modulation simply r_flects T/%efact that

the modulation has caused the average response energy of the neutx_m%monitor to increa_

thus increasing Aj/AN° Indeed, the points where _j/AN : i reflect the change in this

response enerEy_ The values of 7 and 15 By obtained from the fiEure are consistent

with the modulation we _escribe here extending _o neutron monitor energies as well.
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. Consider our results in tents of the diffusion ncx_elof Parkem (1963) in

which one considea"san equilibri_L%condition established between the sweeping out

' of galactic cosmic Pay particles by the solar wind and their inwamd diffusion

t/u_ugh scatterinE by i?reEulamities in the magnetic field. For an is.tropic

paz_icle distzibution, one obtains a modulation of the form:

R

3 I U(r)j (v,r)--3o (v,rOexp -V _ _
P

where v = paPticle velo_:ity,R is the boundary of the interplanetary medium and

r is the location of a point inside, U(P) is the velocity of the solar _ind and

_(r) is the MoFoP0 between "scattemings"o Assuming U and k are both constant with

P gives:

3U (R-P)

j (v,r)- 2o (v,_ e_

Tne acZual enemEy or rigidity dependenoe of such a modulation is almost

completely described in terms of %he vamiation of X with rigidity° Parkem has

discussed the vamiation of X fop a simple picture containing two _tems --

the scale size of "_heizTeEulami_] (scattezing center), &, and the particles

Padi,_ of ourwaCure p° Very simply9 if P<<&9 X(v) = ConSt; if p-&tX(v) -p/&;
1

and if O>>&_ xCv) ~p2/&2°

We have already seen Chat The modulation is -1/v at low energies. This

suggests TJ_a¢xCP) = c_,S%o and Chat P<<&9 a generally accepted condition in the

• intez_lanetar_;/medium at low energies0 Howavem, at the same v the modulation of

protons and helium is different° This is not indicated by this model. A r_Eidity
I

depender.._which might explain this velocity splitting could be introduced by

assuming _(v) .p/Z Or p2/Z2o However, the modulation itself would then depend on

i/v2 or i/v3 a% low rigidities in con_adiction with our measurements0 Unless one
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is prepared to introduce a new concept of shattering, then it see_nstha_ our.

results cannot be explained on the basis of this picture alone.

What other possibilities exist for a general modulation mechani_n? Recall

the _tsof Ehmert (1960) who suggested that the ll-year modulation was

explainable in terms of a he_ocenzric electric field (i.e. potential difference

between the orbit of earth and a few hundred AU)o Ehmert demonstrated that _he

variations at high energies could be related directly with the meastumments of

the changes in the differential spectrum of protons and heliun nuclei measured

in the period 1955-1959 by McDonald and Webber (1959)° The actual change in the

differential spectrum at i_ enerEies depends on the assuned initial spectrum in

such a model° Ehmert originally assumed that the proton and helium,nuclei spectra

were identical (power laws in kinetic energy) at low ener_ieso As a result of the

modulation of such spectra in an electric field, the changes in heliun nuclei are

somewhat larEer than protons at a fixed riEidity0 This splittinE was nat observed

in the measured spectra of McDonald and Webbar0

Recent measureammts confirm the splitting of the two spectra at low energies

and suEEest that this occurs before the pax_icles are modulated in the solam
a__

system° Using this new data, Freier and Waddington (1965) have revived the

electric field model as an explanation for the ll-year modulationo A study of

the modulated spectra presented by Waddingtcn and Freier shows that a_ t.he"____

rigidi_ The modulation of protons and helium nuclei are almost identical0 Thus

fop what are now believed %o be reasonable initial low ene_ spectra passage

through an electric field produces a modulation indistinguishable from a

"rigidity" dependent one°

The fairly well known chamacteristics (particularly the turbulerLce-diffttqion

aspect) of the outflowing solar solar plasma and magnetic fields do not lend themselw

in a simple manner to a description of the m_dulation process in terms of an electric

field -- either static or dynamic° However, one can retain the idea of diffusion in
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• the Parker sense if one asm_nes that in addition to the intensity _./%angecaused

b_ diffusion-convection, diffusive deceleration (inverse Fermi effect) and
I

betatron decelemation are equally impol-tantin this expanding outward moving

interplanetary field° This idea was first applied to the modulation of galactic

cosmic rays in Forbush events by Laster, Lenchek and Singer (1962)o Their

calculation of the modulation produced in an expanding gas cloud gave a

modulation much like _hat to be expected for a simple electl-icfield° Webber

and McDonald (1964) suggested that this type of energy los_ may be a most

important part of the ll-year variaticno At present, a rigorous calculation

of the spectral dependence and magnitude of the modulation to be expected from

this effect has not been made forethe ll-yeax,va_iationo However, a number of

. simple c_._culationsshow, Parker (1963,1965), Dorn_n (1963) and quenby (1965)j

that the modulation to be expected from inverse Fermi ener_d loss and betatron

• deceleration in the in+erplanetary medium is at least as larEe as that expected

from the diffusion-convection process alone°

These calculations have been carried out for protons only and give no

info1_nationon the charge dependence of these energy loss terms and in partiouler

whether they can produce The observed riEidity and velocity dependence of the

modulation o

Let us now consider the inverse Fermi effect (which is the dcminant energy

loss process) from the point of view of particles of different charEe to mass

ratio° In this enerEy loss proc_ssj the particle deceleration is caused by

the induced electric field_
4

E: - --iUxH
mmm C _ Imw

due to the velocity U of the scatterinE centers relative to the earth (solar wind

velocity).
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The energy lose per nucleon in the interaction of a particle with _L

individual scattering center (or with an electric field) is:
--: | I I II

Z
Atnuc" e E o

where £ is a scale length° The calculation of the energy loss of a particle

moving with velocity v with a scatterin_ center (assumed to be a rigid hard

sphere p << _) of velocity U << v gives for a heacbn collision:

--__y.t^o'.- _-+ 2 v.._U

k '¢;nuc -- C2

i_otetha_ this fractional energy loss is independent of charge to mass

Z We recoEnize The other simple types of scattering process possible,Patio _o

that is, when p >> _, _ p = _. In these cases, however, "scattering" occums

only after the summation of many smaller scattering.q. In effect, the particle

is continuously being scattered or what is equivalent -- the change in energy

in a given small spattering depends only on _le (relatively small) dimensions

of The sca%-terinE center itself and no_ on the particles radius of curvatu_eo

As a result, the enerEy change per collision beoumes:

In the interplanet_%rymediun, the averaze energy loss per collision is

determined by the relative velocity of recession of the different scattering

centers, (or effective scattering radius)o This in turn depends on the geometry

of the expanding interpl_etary region as well as possible variations of U with

radius° Fur em_mple, assuming an isotropic velocity distribution of particles,and

a uniformly e_nding spherical region of radius R and surface expansion velocity U,
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I
"_e relative velocity of the individual centers, AU = (_ (whet_. I is the scattering

M. F. P. discussed earlier)° This situation may not be realistic for the interp_netary

medit,n, b_ever, since it is }anownthat U is essentially constant alone a solar radius

vector. In this case there is expansion only in The direction at right angles to the

radius vector0 In this case AU = 2 ( __l ) U where r is The distance fzom the sun.
r.

Since the mean nuTnberof collisicns/ux_i±":_,_"_ v/\ then_

Y

dcnue 4 v2 U

3 c _: r

and dZnuc
" ;C_ =

(at the earth, fop ex_q.le, with v = c, U = 4 x 107 an/secps = 3 x 10-6 / sec).

Now ck_ringa time dt the particles will diffuse a dis%ance dr by a random

walk. After n collision in an infinite isotropic diffusing medium the average

particle will move a distance d2 : 2N k2 from,its s%artinE point, One can define

21v
an average velocity for diffusion over a distance d as vd = "d--so that a particle

will take a time t = d--2 to move a distance d _l the medium° If we take i = 2 x I0 cm
Iv

and d = I0 AU_ _hen t = 5 x 106 sec fop a particle to diffuse into _the center of the

solar system. Thus,IAL_ "i and it seems unavoidable that this process will produce a

significant change in particle energy° As a r_sult accerdinE to Liouville's theorem t

thez_ is a change in the differential energy spectrum given by: A_e/j " Ae/¢ or in

the differential momentum spectrum _] A_p/_ _ 2_P/Po An additional change will occur

because of the spectrum of the radiation° Since the spectrum is a complicated function

at low energies the c_nge can be _rea%ed separately by an iteration process and we

shall neglect this effect here°
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dr

Using the fact that dt : - v-_ we can write:

vd

Taking _ = Jo at r - R and inteKrating gives:
_= r (R-r)

(¢,r)- ]o ( Co, R) ,_p 2Xv

This modulation is seen to have much the same form as that resulting from

diffusion-convection _iven on p-4. It cannot be compared directly in magnitude

since no account of the spectz%unoN of betatron decele?ation effects has been

taken in this simple treatment. H_4eveP, we my compare the chamge to mass

dependence of the modulation for different types of scatterin_ by.inserting

the appropz_iatevalues of s and _. This gives:

C¢,=)--Jo ( ¢o, R) exp "_A" (C 2 X C0,__)

and

- 2 (v2\
(¢,r) -"Jo (¢o,R) exp _ \C2 x;(p << £ )

We see that fernp ,< _ the chamge to mass dependence is contained in X as

%Kth diffusion-convection and the invePse Fermi ener_j loss cannot explain the

obserwations. (Note that this term becomes relatively less important than diffusion-

convection at.low energies fernthis %_pe of scattering).

Z i .- becominE
FoP (p _ A )the fPaetional modular.ionat low energies is _ .

Z 1_ at high enerEies Such a modulation is in aEr_ement with the obsemvations

at low enerKies, but is somewhat too strong a function of P at high energies. Thus

althoush the data at low energies could be explained by the inverse Fermi .processalon4

it is likely t%mt both this process and diffusion-convection play a role in bo_h ener_
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renges -- with t.herelative mangitud_ of each varying with energy. This possibi._ity

is further heightened by the fact that a continuous distribution of scatterlug

lenEths (and M.P.P.) probably exists in interplanetmry space. Even with such a

distmibution the diffusion convection picture cannot explain the results, however.

Finally we should note that there is need to investiEate zhe effects of the

spectrum term itself on the fractional and Pelative modulations as well as the effects of

betatron decelemation. This latem effect is, in fact, veinysimilar to the diffuse

sca%_eminE (p __L) invemse Fermi effect -- for in both Cases a net loss of enez_y

is continuously occuzTinE.
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Pi&nzre1 Ratios of fractional changes measured in low energy protons and

helium nuclei to those observed in neutron monitors. The energy

dependence of the modulation of both protons and helium nuclei is

-1/8 but at the same velocity t_hefractional chan_e of protons is

..2X as great.

Figure 2 Data presented in Figure l, plotted (squares) as a function of

rigidit_ and showing equal proton and helium modulation at the

same rigidityo Circles show proton and helium modulation derived

from all available data extending over the entire solar cycle and

discussed in the text.
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RAPPOK_EURPAPER ON "SPECTRA"

Co J° Waddin_on

;:; This papem attempts to summmize some of The more striking and interestinEresults

_,_ repurtedto this conferenceduring the sessionson "Spectra"° Inevitable,due to the

:ii/:ilimited space availableand the large number of papers presented in these sessions,

_-,L;:,:,:some form of selectionhas been essential and it has been necessaryto omit any

_-,).i:i:__ reference to scme important and interestingresults which have not conveniently

'__ fitted into the fremework of this repcrto This selectionreflectsThe author's

.:::_:_:personal bias and should not be taken to imply any _udgmentoD the scientific

:,._,::_,worth of these omitted papers.
j, .

:"""_ The sessionson Spectma,tosether with a few papers in other sessions,covered
t

essentiallyfive differentaspects of cosmio ray studies, Each of These will be

!:::.,:_.consideredin turn.
,,..

:;)..;: (I) X-ray and _-ray as%Tonomy:

'-'"'ii'_Followinga review paper by Oda(invitedpaper) which summarizedcurrent development
;/,.(

/'_ in This field, severalpapers were presentedto this conferenceon high energy x-ray
_..!,._-_

,::/_and v-ray observationsmade frum balloons or soundinErockets. Previouslyonly one
_,

,_,.,,point source of high energy (15-60kev) x-_ys had been reported in the lit_at_0
F.:',
] ,

,_,. Details of This observationof The Crab Nebula with a detector flown on a balloon

were given to this confe..._enceby Clark (SPEC 2) while McCracken (SPEC _a] repoPted

inadequate%0 distinsuashbetween CyEnus A and CyEnus X-I_ the sourceof soft x-rays

the observationof another point source in tl'm vicini%_of _.gnus A, usxng a detector

very similar to.that Floyed by Clark. The angular resolutionof this detectorwas
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detected previously, which are some 6° apart° }bwevez.,_t seems r_asonabie to
m

postulate that McCracken did indeed observe the latter source, since Cy_nus A

. does not appear to be a strong source of s_ft x-r_yso A thir_ observation of

point sources of enerEetic x-rays came from Hayakawa et al (ACCEL 6) who reported

rocket observations on 5-20 keY photons and saw point sources coinciding with

Scorpio X-1 and CyEnus X-l° These workePs also repcmted observations on the

general isotopic backsround which revealed x-rays havinE the same spectral form

as those obsex-_d fop point sources but having appreciably gTeate_ intensity than

that observed for any individual source° In general, these observations on x-ray

sources and on the isotropic backQyound indicate that the subject of x-ray

astPoncmy is active and rapidly developinE, and a field that should have been

covered in much Ereater detail in a conference on cosmic radiation.

" Gamma-ray astToncmy, on the other hand, still has scme resemblence to the

discipline of exobioloEy, in that as yet neither subject has any definitive

data to impede theoretical speculation° No point source of enerEetic, E > I0 MeVI

y-Pays has been detected thus far norais there definitive evidence fop a Eeneral

backEroundo Thus, the experimental data consists solely of flt_ limits for the

backEround and fop various likely point sourceso At this confemence, Cobb et

al (SPEC ) reported the lowest flux limit yet obtaine_ ZbP any object, quoting

a limit fop the Crab Nebula of less than 5.10-5 7/_ sec fop the flux of y-rays

havinE E z i00 MeV as well as a numbeP of hiEhe_ limits fop othe_ possible

astronomical sources° These limiting values were obtained from a spark ehambeP

array flown on a high altitude balloon neap the equatoP and illustrate the.advantaEes

" in r_duction of bao.kEroundthat can be obtained by equatorial fliEhts. Finally,

at much hiEhem enePgies, Fruln et al (SPEC 3) described observations made with

Eroundbased Cerenkov detectors which set uppeP limits of i0-II to 10"12 7/cm2 see

On the fluxes of 7-Pays with E > 1013 eV fr_n a numbeP of quasars and othem plausible

sources° These limits are very similaP to those obtained with similar techniques
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by Chudakov e% al (1963) for a number of other celestial objects.

(2) Electrons in the Primary Cosmic Radiation:

_._ observation and detailed study of primary electrons in the cosmic radiation

is of s_eat interest both to astrophysicists and radio as_.onome_. Current

knowledge of the propezqies of these particles was summm_ized in an invited

papem by Meyer0 A n'_nberof new results were reported at this conference which

t 4- •
related to the xn_ensity, energy spectzaznand charge ratio.

The various r_sulZs reported for the intensi%_jare shown in Figure 1 which

illustrates the wide spread that exists in these values. Shown are the integral

intensities r_porTed by Agminiem et al (SPEC 8), Rubtsov (SPEC 6), Daniel and

Stevenson (SPEC 9) and WaddinsTon and Freier (SPEC 10), together with the inteEral

spe_ between 0.5 and 3.0 GeV calculated from the differential spectrum of

dJ/dE : Ii x E"1°6 + 0.1_electr_ns/m2sec_ stem° GeV reported by L'Heur_ux and

Meyer (SPEC 5)o It is apparent from t_hisfigure that the results of Rubtsov

are in disagreement with those repur_ed by othe_ workers° Since the counter

array used in this experiment has not been calibrated with a beam of electrons

of known energy and since it represents a rather complex and devious me_%od of

electron detection, it would appear that the acceptance of these results must

await fur_hem exper_nen%al confirmation0

Observations on the energy spectrum of the electrons are collected in Table I

which lists the values of the integral and differential exponents of the quoted

spectra on tb_ assumption That this can be z_.presentedby a power law of _he form

dJ/dE = KE'¥ over the range of energies covered in ea_ experiment. Included in

this table are the results of Bleaker e% al (SPEC 7) who reported a value for

the spectz_anbut were unable to determine an absolute i_tensityo An eu4am_tion

of this table shows tha_ at the lower energies this spot%Turnis apparently not

8s steep as that of the prLmery cosmic radiation, but that at higher energies,

there is som_ indication of a steepeninE° If verified, th/s behavior shou].,_
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• provide an interesting indication of the natur_ and propagation of these electrons.

although the possibility that these changes in the form of the spectrum are simply

. the consequence of residual solar modulation effects should not be disregarded.

None of the r_sults reported thus far have been accurate enou_ to pe_it any

study of the effect of solar m_du]mtion but it would appear from the two values

quoted by Waddington and [_k_eierfor 1963 and 1964 and the agreement between the

value Pepomted here by A_inier et al and that re[w;rtedpreviously, that solar

modulation effects are not Erossly more serious than those obse._vedfor protons

of simila_ _igidityo

A_inier et al and Daniel and Stephens both reported using the east-west effect

to examine the positTon-negatron ratio of -4 and 15 GeV electrons respectively0

Agrinier et al found that rheim data was consistent with the electrons all being

negatively charEed and reported that even in the limiting case of an infinitely

steep energy spectrtrne'/(e+ + e-) , 0o620 This result is in agreement with the
I

negatron exoess reported by Meyer in his review paper for electrons of r_ther

low_r energy. At very high enerEies, -15 GeV. Daniel and Stephens examined this

problem but have as yet results of extremely limited statistical weight and c_n

not meally dr_w meaningful ccnclusions o

It was pointed out by several authors that the general run of the intensities

shown in Figure 1 are considerably too 8Teat to be accounted for solely by the

secondary production of electrons duping the passage of the nucleonic cosmic

radiation th_ouEh reasonable amounts of interstellam matter° The essentially

prdmary na%_/x_of these electTons is also suggested by the negatron excess

• obsemved by Meyer and by AEminier et al and it appears r_asonably well established

by now that the electrons observed neap the eaz-_hmainly originate in accelerative

processes 0

(3) Protons and Helium Nuclei:

Studies of the low and inte_,ediate enersy protons and helium nuclei in the

pmimary cosmic radiation present one of the most direct and critical ways of
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investigating the processes of solar modulation. The shapes of the low enex_y

spectra of nuclei having different charge to mass ratios and the temporal

variations of the differential intensities represent data which must be

explainable by an acceptable model of solar modulation° However, only in the

past few years has it been possible to make measurements of good statistical

weight and small apparent systematic error on the protons and the heli_n nuclei.

As a consequence, it is only now at this conference that results ha_e been reported

which reliably measure the temporal changes of these components and thus impose

severe limitations on the possible modulation processes.

In the intermediate energy range, from the atmosphe1_iccut-.offforeballoon

borne detectors of .80 MeV per nucleon, to the relativistic region of _ 1 GeV

per nucleon i the results of Ere_Lest statistical weight were those presented by

Ormes ald Webber (SPEC 12,13). _ese are illus%-retedin Figures 2 and 3 which

show the differential proton and helitm rigidity spectre observed in 1963 and in

1964o The effects of solar,modulation can be clearly seen in these figures and

it may be noted that over this time period the protons at a given rigidity clearly

experienced a la_er "//%creasethan did the heli_n nucle. A comparison of the

energy per nucleon spec_ma, i.e. velocity spectre, showed this differential behavior

even more clearly. A similar effect was noted by Waddington and _reiem (SPEC 10)

whose results, which also co_r 1963 and 196B but are of lower statistical weight,

are in good agreement with those of Ormes and Webber, suggesting that there are no

serious systematic errors present in either of these measurea_nts. This general

agreement is largely supported by several other results reported here on proton or

helium nuclei measured at times c_able either with 1953 om 1964, Neelakanton

(SPEC 17), Pichtel et el (SPEC 19) and Balasubrahmanyan et al (SPEC 31), and even

possibly with _he somewhat discorden% results presented by Courtier and Linney(SFEC 21)

However, this agreement is not perfec_ and it must be emphasized that %here is no

external evidence to prove that 0treesand Webbers' results do not suffer f_m
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' systematic errors of as much as 5%. As a consequence, the lack of statistical

errors on Figures 2 and 3 should not be taken too seriously when abso3ute values

are being considered, although such systematic errors, if present, should not be

so serious in The study of _tive changes° It Thus seems that it is now

possible to make rather precise studies of the temporal behavioz.Of these particles

provided sufficient care is taken in "theanalysis and in correc_ir_ fop back@1_und

effec%so These results have already placed strinEent req'ui_nts cn the models

of solam modulation, and should le_d to greatly improved models.

One wo_d of caution may be interposed here° Many of The earlier results,

those fop example, on the helium nuclei_ appear to exhibit Eross differences even

when pemiods of apparently similam solam modulation were c_d° HoweveP, most

. of these results were obt_/ned at tin_s of high solar modulation_ when intemplanetary

conditions were _ly disturbed° It is possible that the larEe measume of

' sgreement being obtained at present is more a function of the relative solar

inactivity than of more reliable experimental data, and that violent disaEreemsnts

may again a;_ear with the onset of The new solar cycle and inc1_.asedsolar activity,

At high energies, , 5 CeV per nucleon, Neelakantsn and Shukla (SPEC 16) and

Agarwal et al (ISOT2) rapoz_ed observations on the enez_y spectman of helium

nuclei and The intensities of protons and helium at 16o8 GV r_Eidity which appeam

to be an improvement on those previously reported, but do not represent any

drasticchange°

Some of the most interesting results on these nuclei were those repo_ted on the

low energy, E _ 80 M_V per nucleon, panicles observed with satellites. Pan et alP

(SPEC 22) repo._tedobservations on low ener@y heliun nuclei made be_em_ late 1963

. and the end of 1964o Figure 4 shows the steady increase in differential intensity

and the flattening of the energy spectrum with decreasing solar activity that

typified those nuclei having 40 _ E c_ 80 MeV per nucleon° It a&so shows evidence
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for a component of _till lower energy helium nuclei, 7 __E __20 MeV per nucleon,

which falls shazgly with increasing ene_o These particles are apparently

associated with evem steeper proton energy spectra and show .largetemporal

vamiations although there is apparently always a finite intens_ present. A

similar %hAm-up in the erm.rEyspectrum of the heliun nuclei obser%,edin 1965

was reported by Balasubrahmanyan et al (SPEC 31), Figure 5, but these workers

did not extend their measurements to quite such low enerEies as did Fan et al,

and, possibly as a result, did not observe an associated %mzn-up in _e proton specrcun

except at times associated with definite solar activity0 The oriEin of these low

enerEy particles appears to be quite obscure at present° They could have been

accelerated on the sun or in the interplaneteu_yn_edium, Alternatively, they could

be particles of such low rigidity That they can preferentially leak through The

solar modulation barmier°

A final result of interest in This section was the report by Ba/asubrehmenyan

et al (SPEC 31) that be.Cween 1963 and 1965 and fop energies between 50 and I00 MeV

perunucleon, The helium nuclei apparently shoed a larger increase in intensity

than did "_heprotons° This is The reverse of what was observed by Ormes and Webber

(SPEC 13) and Waddington and Freier (SPEC i0) between 1963 and 1964 for E > i00 HeY

per nucleon° The most logical exz)lanationof this discrepancy would appear to be

that in 1965 the low energy additional component of heli,_nnuclei described above

was of such a magni%_de as to produce this effect° This would imply an appreciable

steady intensity of These nuclei at or near solar ndmimu, which is sharply

diminished at other times°

(4) Isotopic Oomposition:

Prior to this meeting there had been a number of reports on _he relative

abundance of the He 3 au_dHe4 nuclei which had, with _ust one exoeption, depended

on obtaininE expemimental mass z_solution between these nuclei in nuclear emulsion

detoctors, At this conference, several new det_minaticns of the ra_io i r, of He3
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to (He3 + He4) were reported, two of which depended on elec%Tonic dE/dx versusM

total E measurements, The resolution obtained in these observations was clearly

. superior to that obtained in even the most painstaking and careful emulsion

meas_n%, 0'Dell et al (SPEC 33) and i% seems clear %hat emulsions inherently

lack %he uniformity necessary to permit unambiguous separation even be%_veen

isotopes as dissimilam as lle3 and He40 The various ratios reported as a function

of riEidity or enerEy per nucleon are given in Table IIo Of these results that

due %o Balasubrahmanyan e% al (SPEC 31) is a prelLminaz_ value taken from data

showing rather clea_ resolution on 0G0-I, that due to Hofmann and Winckler

(SPEC ) shm4s similarly good resolution and is from a balloon flight made at

a time, _y 1965, when solar modulation was apparently at a minimun. The emulsion

data reported by 0'Dell e% al (SP_'.C33) shows fair resolution which, however, is
A

not as clear as that of the previous experiments, while Biswas et al (SPEC 18)

reported results having barely adequate resolution° Finally,Agarwal e% al (ISOT2)

used a variable pressure gas Cerenkov counter to study This matio at an extremely

high rigidi%yo These results are at present of limited statistical weizht, but i%

i_ to be hoped that they will be improved in the near future since a meas_t

of %his ratio at high energies will be d cm_sidereble importance, particularly

in view of the suggestions that the fragmentation path length measured by the

L-nuclei may be energy dependent° Examination of Table II shows reasonable

agreement between the various reported results, particularly wllenit is appreciated

that The app,_ently anunalous value for P(P0 reported by O'Dell e% el is for a

range of rigidities higher than That of the other exper_ts, where the shape

' of the energy spectru_ is vazTing rapidly°

(5) Heavy Nuclei, Z >_ 3"
t

Four years ago at _%e Kyoto Conference, it finally became possible %o state

that gm,eral agreement had now been obtained on the relative abundance of the

fras_entaticn nuclei, lithium, beryllium and boron, L-nuclei, %o t_e heavie_,
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S-nuclei. This agreement applied essentially to the integral value of the L/S

ratio measured above 1o5 GeV per nucleon, i0eo to nuclei having a mean enerzy

of 3-4 GeV per nucleon. At this eonfer_J%oe,papers have been presented which

discuss ,.hevariation of this ratio with energy and which show an unusual and

unexpected variation in this ratio of very low energies°

In the intez_nediateenergy range, the data of greatest statistical weight

was that presented by Webber et al (SPEC 30)o Simila_ eonmw.ntsre,aiding

The significance of These statistical ezTors relative to possible systematic

erTOrs should be applied to these results as were applied in Section 3 to the

results of 0treesand Webber on protons and heliun nuclei. Figure 6 shows the

L/M ratio, where M-nuclei have 6 _ Z <_9, plotted both as a function of rigidity

and enez_y per nucleon as observed by These authors. It can be clearly seen that

this ratio increases as the migidity or energy decreases, with an indication that

it reaches a maximum at about 400 MeV per nucleon. On These data the evidence

for a maximum is not conclusive, but other experimants reported here which

are discussed below cleamly showed that at low enerEies the ratio falls

appreciably. The general trend and magnitude of the values shown in This
v

fiEure agreed well with the results r_por_ed by Anand et al (SPEC 27) and by

Freier and WaddinEton (SPEC 24), bo_ of whom observed values for the L/M ratio

which were appreciably higher at 0°3 - 0.5 GeV per nucleon than at higher energies.

Ar_them interestinE consequence of The &_eat statistical weight of the results

obtained by Webbem et al is that they were able to compare the ener_ spectra of

The various charEe Eroups with those of The helium nuclei. This comparison is

shown in Figure 7 and indicates that possibly the M and LH-_ I0 __Z __159 nuclei

have enerEy spec_a who_e exponent i_ the power spec_an, her_ assuned to be of

the form dJ/dP - KP-w_is 0.I to 0.2 greater than that of the helium nuclei°

Confirmation of this result would be most important, suggesting as it does that

appreciable composition chanEes may exist between the I09 - i0I0 eV per nucleon
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typical of these measurements, and the 1014 eV and above typical of air shower

experiments o

The rather tu%expecteddecrease observed in the L/M ratio at low energies was

just one of a number of observations reported here which showed that previous

simple minded ideas of the production and propagation of the low energy cosmic

ray nuclei must be drastically modified° In its simplest form the model

custcmarily assumed for production and propagation suggests that one initially

starts with some unspecified cosmic ray source(s) which inject nuclei into the

interstellar matter with a particular energy and charge spectra. These nuclei

, "t..henpropaEate through the interstellar mediun undergoing fresnentation and

ionization losses which change _he charge and energy spectlx_nrespectively.

The presence of L-nuclel shows almost certainly that fragmentation plays an

I -
important role in the overall propagation and in order to explain the data on

these nuclei and on the He3 nuclei at low energies it seems reasonable to assume

that the relativistic particles ,E .>1 GeV perunucleon have %Taversed approxln_tely

3 g/cm2 of interstellar miter, while those of some 200 - 300 MeV per nucleon have

traversed as much as 6 g/cm2. Now the traversal of such quantities of matter

might be expected to produce, as a result of ionization energy losses, very

obvious shaping of the low energy end of the energy spectra, with nuclear species

of increasing Z being more and more depressed in intensity and more and more

sharply cut-off at low energies relative to, for example, the heliun spectrum.

Appaz_ntly This does not happen and there appears to be little or no evidence

for appreciable shaping of the energy spectra by ionization loss. It is thus

" necessary to make a clear distinction between the amount of matter traversed

which causes fragmentation and that traversed while the de-acceleration due to

ionization loss dominates the accelerative processes actinZ on the nuclei. In

the light of the _vid_ce p_esented %0 this conference, it would seem that

accelerative processes other than ionization losses are present and dominate during

the %r_versal of most of the matter responsible for frasnentation.
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The.first z_por_ that indicated that something unexpected was occurring at

lowe_ enez_ies was the observation by WaddinEton and Freier (SPEC 25) that the

_l-nuclei, 20 _ Z < 28, which should be those most seriously affected by

ionization losses, appeared to have a low energy spectrum similar in shape to

that of the heliun nuclei. Fu_hermore, the intensity was that expected from the

VH-heliun Patio measuz_d at hiE_ energies, whereas ionization loss should have

depPessed the intensity of the VH-nuclei by more than a facto_ of %_m. These
i

results ape shown in FiEu_e 8 and indicate that these nuclei have passed t]u_ouEh

appreciably less than 2 g/_ while being influenced solely by iordzation loss.

More spectaculam r_ults, apparently indicating the same thing, were reported by

Ccmstock et al(SPEC 23) and BalasubPahmanyan et al(SPEC 31),who both reported the

obsel-vationof appreciable numbers of very low energy heavy nuclei,having an

essentially flat eneaTgyspeciTtvnin an enerEy range where the spectrt_nof the hellion

nuclei was fallinE sharply° Fixture9 shows the spectra reported by Comstock et al

(SPEC 23) for various nuclei. A compamison of these spectre with that shown in Figure

4 for the helium nuclei shows_hat fad _ exhibiting a mode steeply falling spectrum

these heavy nuclei have much flattem spec_a0 This is, of course, quite inconsistent

with the pure ionization loss hypothesis° Another very interestlng aspect of these

satellite 4ata is illustrated in Table III which gives the abundances Pelative to

oaz_n at 100 MeV perunucleon and Ereatem than 600 MeV per nucleon as obsemved by

Balasubrehmanyan et al(SPEC 31). There seems to be a virtually complete absence of

lithium and bePyllium nuclei at these low enez_ies,but appreciable quantities of boron.

As a consequence, the L/M ratio is appreciably less than that obs_d by,for example,

Webber et e.1,at 300 MeV pen nucleon. This generel tendency for the relative abundance

of the L-nuclei to fall at Ic_7enez_ies was also observed by Comstock et al and by

Fichtel et al (SPEC 28) and must be accepted as being well established° _._nethe_it is

due to enerEy dependent changes in the fra'gmentationpadameters, which seems most likel_I

pamticulamly in view of the abundance changes within the L-nuclei group,or to some othei

_use_mustawaitf_hgre__t_studV.It is, for example,conceivable that _%ny
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of these low energy nuclei are of solar origin and that the observed spect.%_

is a combination of solar and galactic components° Philosophically, this is

an unat_active assumptions, as it demands a fortuitous coincidence between

the intensities of the two components, but it would explain in a natural way

_he apparent lack of lithium and beryllium at low energies, althou_> then the

presence of appreciable amounts of boron becomes puzzling°

These data at low energies are extremely important and it is interesting

to compare the various results for checks on the consistency° _ile the

overall agreement be_4een the two satellite experiments is quite good, there

are scme discrepancies in points of detail° Comstock et al reported appreciably

more L-nuclei than did Balasubrahmanyan et al and also claimed that oxygen was

more abundant than carbon, the reverse of what is observed at hiEhem energies

and what Balasubmahmanyan et al reported° It is not clear at present whether

these differences are statistically sigD/ficant0

The absolute intensity values observed in these satellite experiments appear

to be in reasonable agreement with each other and with the values reported by

Fichtel et al0 It is also interesting to note that the high energy intensity

of silicon reported by Ccmstock et al is in very good aEreement with a value

quoted by WaddinEton and Freier (SPEC 25) from a balloon borne detector°

A final observation of a rather different nature concerns the intensity of

nuclei appreciably heavier than iron, Z=28o Webber et al and Waddingrtonand

Freier each reported systematic observations on rather mornthan 300 VH-nuclei,

20 • Z • 28. The first group saw one probable Z=40 nucleus and one possible
um_ . m_

" Z=40 nucleus, while the second group saw just one Z=32 nucleus. However, at

this conference, Walker et al (TE_{ S) reported the first results from a new

technique which should greatly improve knowledge on %he abundance of these

nuclei° These workers find that certain crystals in meteoritic material show

evidence for damage which was most pr_,bablycaused by stopping VH-nuclei and that

by suitable treatment short tracks appear whose length depends rather critically
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on the charge of the stopping_nucleus° These c_yst._lsthen behave like vemy

insensitive nuclear emulsions which have had an exposure time equal to the

lifetime of the meteomite and, as a consequence, there are large numbers of

tracks in small volumes of the crystal. As yet_ Walkem et al have been unable

to calibrate this technique and as a result they aid not wish to quote a value

forethe relative abundance of the Z _ 30 nuclei, howevem, examination of rheim

data suggests that "theratio of VH-nuclei to still heavier nuclei is about

l:10-4. This value would suggest that these very very heavy nuclei have an

abundance somewhat similar to that of the cosmic abundances, mathem than showing

the typical cosmic _ay ovemabundance of high charge nuclei. This behaviom is

what would be p_edicted by Colgate (ACCE-4) on the basis of his theory of a

supernovaoriginfor cosmic rays.
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TABLE I

Form of the Electron Energy Spectrum. On assumptionthat:

dJ
KE-7

Author Differential InteEral Energy Range

Y y-1 GeV

L'Heureux and Meyer 1.6 4.0.5 (0.6) 0.5 - 3.0m

Waddin_on and Preier 1.6a (0.6) 0.5 - 5.0

Bleeker et al 1.9 + 0.4 (0.9) 2.0 - 15.0

Rubtsov (2.8) 1.8 3.5 - 8.0

A6n_inie_et al (3,0) 2.0 _+0.5 I_o6- 8,0

Daniel and Stepher_ (2,2) 1.2a 18 - 50

[o aThese are emulsion experin_ts in which the statisticsare really too limited to permit
t.

a reasonabledeterm/nationof Y or y-1.

'II

TABLE II

Values of the ratio of He3 to (He3 + He4),r (R or E), as a function of

energy per nucleon or riEidity.

AN _E
Technique (R) GV £(E) MeV/Nucleon Date Authors

dE
_-_ v, E - - 0,i0-0,15 ..-50-I00 1965 Balasubrahmanyanet al (SPEC 31)

dE
v. E 0.39+0.09 ,_0.8 0.19+0.05 80-150 1965 Hofmarm and-- -- Winckler{SPEC )

Emulsion 0.32+0.07 0.85-1.12 0.11+0.03 I15-210 1963 Biswas e% al
- - (SPEC18)

Emulsion 0.11+0.04 1.2-1.5 0.10+0.03 215-368 1963 O'Dell et al
-- -- (SPEC 33)

Gas Cerenkov 0.45+0.23 ,,,16.0 - - 1965 Agazwal et al
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T/_BLEIII

Abundances of various elements relative _o Cambon as obsez_ed by

Balas_yan et al (SPEC 31)

Element Abundanoe
E=100 MeV per nucleon E > 600 MeV per nucleon

UndeP 2.8 E/ore2of atlnosphez

Li 0.01 0.3

Be 0.01 0.2

B 0.3 0.4

C 1.0 1.0
I

N 0.2 0.3

0 0.8 0.8

P - 0.04

Ne - 0.1W
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. FIGURE CAPTIONS:

Fig. 1 Flux values of electrons _epor_ed by various groups at this conference,

• see text.

Fig. 2 The differential rigidity spectra of protons observed in 1963 and 1964,

statistical ez',roz.s are less than the size of the points t Ozmes and

Webber (SPEC 13).

Fig. 3 The differential rigidity spectPa of helitvnnuclei observed in 1963 and

1964, Opinesand Webbe_ (SPEC 13).

Fig. 4 The differential energy spectra of heliun nuclei obsemved by satellite at

a number of pemiods be%_een 1963 and 1964. Notice that in or_em to compare

. these mesults with those of other workers, the enemgy scale should be

multiplied by foum, so that the energies are expressed as energies

pep nucleon. Fan et al (SPEC 22).

FiE. 5 The differential energy and migidity spectra of protons and helium nuclei

as observed from satellites and balloons in 1965, Balasubrahmanyan et

al (SPEC 31).

Fig. 6 The ratio of L to M-nuclei as a f_nction of energy pe_ nucleon and of

rigid£ly, Webber et: all (SFEC 30).

Fig. 7 The ratio of the differential intensities of helium nuclei to those of

various other charge groups plotted as a function of rigidity_ Webber

et al (SPEC 30).

,' Fig. 8 The differential energy spectrum of VH-nuclei as observed in 196,. The

curve labeled VH(1964) shows the expected form of this spectrum if the

VH-nuclei had passed Through just _ g/cm2 of interstellar hy4rogen and

had an energy spectrum similar to that of the helitm_nuclei shaped by
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Fi_. 8 (continued)

ionization energy loss, Wadd_cn and Preier (SFEC 25),

FiE. 9 The differential ene_Ey spectPa of several different species of nucleus

as observed on OGO-I° Ccmstock et al (SPEC 23).
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